Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x\cdot\dfrac{62}{7}=\dfrac{29}{9}\cdot\dfrac{56}{3}=\dfrac{1624}{27}\)
hay \(x=\dfrac{1624}{27}:\dfrac{62}{7}=\dfrac{5684}{837}\)
b: \(\Leftrightarrow\dfrac{1}{5}:x=\dfrac{12}{35}\)
nên \(x=\dfrac{1}{5}:\dfrac{12}{35}=\dfrac{1}{5}\cdot\dfrac{35}{12}=\dfrac{7}{12}\)
c: \(\Leftrightarrow\left|2x+\dfrac{1}{3}\right|=\dfrac{30-7}{42}=\dfrac{23}{42}\)
=>2x+1/3=23/42 hoặc 2x+1/3=-23/42
=>2x=3/14 hoặc 2x=-37/42
=>x=3/28 hoặc x=-37/84
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
\(\dfrac{1-2x}{2017}+\dfrac{2-2x}{2016}=\dfrac{3-2x}{2015}+\dfrac{4-2x}{2014}\)
\(\Rightarrow\left(\dfrac{1-2x}{2017}+1\right)+\left(\dfrac{2-2x}{2016}+1\right)=\left(\dfrac{3-2x}{2015}+1\right)+\left(\dfrac{4-2x}{2014}+1\right)\)
\(\Rightarrow\dfrac{2018-2x}{2017}+\dfrac{2018-2x}{2016}-\dfrac{2018-2x}{2015}-\dfrac{2018-2x}{2014}=0\)
\(\Rightarrow\left(2018-2x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(2017>2016>2015>2014\) nên
\(\dfrac{1}{2017}< \dfrac{1}{2016}< \dfrac{1}{2015}< \dfrac{1}{2014}\)
\(\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}< 0\)
\(\Rightarrow2018-2x=0\Rightarrow x=1009\)
Vậy...........
Chúc bạn học tốt!!!
\(\dfrac{1-2x}{2017}+\dfrac{2-2x}{2016}=\dfrac{3-2x}{2015}+\dfrac{4-2x}{2014}\)
\(\Rightarrow\left(\dfrac{1-2x}{2017}+1\right)+\left(\dfrac{2-2x}{2016}+1\right)=\left(\dfrac{3-2x}{2015}+1\right)+\left(\dfrac{4-2x}{2014}+1\right)\)
\(\Rightarrow\dfrac{2018-2x}{2017}+\dfrac{2018-2x}{2016}-\dfrac{2018-2x}{2015}-\dfrac{2018-2x}{2014}=0\)
\(\Rightarrow\left(20418-2x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
\(Ta\) \(có\)\(:\) \(2017>2016>2015>2014\)
\(\Rightarrow\dfrac{1}{2017}< \dfrac{1}{2016}< \dfrac{1}{2015}< \dfrac{1}{2014}\)
\(\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}< 0\)
\(\Rightarrow2018-2x=0\)
\(\Rightarrow2x=2018-0\)
\(\Rightarrow2x=2018\)
\(\Rightarrow x=2018:2\)
\(\Rightarrow x=1009\)
a.A: \(\dfrac{3}{x-1}\)
Để A nhận giá trị nguyên thì 3 chia hết x-1
Suy ra: x-1 thuộc Ư(3) ={1;-1;3;-3}
Ta có bảng sau:
n-1 | -3 | -1 | 3 | 1 |
n | -2 | 0 | 4 | 2 |
Kết luận | Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn |
Vậy x thuộc { -2; 0;4 ;2}
a.Để \(A\in Z\) thì \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có:
\(x-1=1\\ x=1+1\\ x=2\\\)
\(x-1=-1\\ x=\left(-1\right)+1\\ x=0\)
\(x-1=3\\ x=3+1\\ x=4\)
\(x-1=-3\\ x=\left(-3\right)+1\\ x=-2\)
Vậy, để \(A\in Z\) thì \(x\in\left\{2;0;4;-2\right\}\)
a) Để \(A\in Z\) thì \(3⋮n-1\)
\(\Rightarrow n-1\in U\left(3\right)\)
Bảng:
n-1 | -1 | -3 | 1 | 3 |
n |
0 |
-2 | 2 | 4 |
Vậy...........
b) Để \(B\in Z\) thì \(x-2⋮x+3\)
\(\Rightarrow x+3-5⋮x+3\)
\(\Rightarrow-5⋮x+3\)
Bảng:
x+3 | -1 | 5 | 1 | -5 |
x | -4 | 2 | -2 | -8 |
Vậy...........
a) 11(x-6)= 4x+11
<=> 11x-66= 4x+11
<=>11x-4x= 11+66
<=> 7x= 77
=>x=11
Vậy: x=11
b) \(4\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{2}\right)=\dfrac{13}{3}.\dfrac{-1}{3}=-\dfrac{13}{9}=-1\dfrac{4}{9}\)
\(\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{3}{4}\right)=\dfrac{2}{3}.\dfrac{-7}{12}=-\dfrac{7}{18}\)
Vậy: x= -1
dễ mà