Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+1+3\sqrt{x}-3-\left(6x-10\sqrt{x}+4\right)}{x-1}\)
\(=\frac{x+1+3\sqrt{x}-3-6x+10\sqrt{x}-4}{x-1}=\frac{-5x+13x-6}{x-1}\)
b) \(P< \frac{1}{2}\Leftrightarrow\frac{-5x+13x-6}{x-1}< \frac{1}{2}\Leftrightarrow2\left(-5x+13x-6\right)< x-1\)
\(\Leftrightarrow-10x+26x-12< x-1\)
\(\Leftrightarrow15x< 11\Leftrightarrow x< \frac{11}{15}\)
Vậy để P < 1/2 khi x < 11/15
P/s: Không biết đúng hay sai, mong các anh chị chiếu cố
#)Giải :
a) Câu trc của bn mk có giải rùi, thắc mắc vô Thống kê hđ của mk xem lại nhé !
b) Để \(P>0\Rightarrow\frac{x-1}{\sqrt{x}}>0\Rightarrow x-1>0\left(\sqrt{x}>0\right)\Rightarrow x>1\)
c) Bó tay @@
\(a,P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(x-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-1}{\sqrt{x}}\)
Vậy với \(x>0;x\ne1\)thì \(P=\frac{x-1}{\sqrt{x}}\)
\(b,\)Để \(P>0\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\left(\sqrt{x}>0\right)\)
a/ \(B=\frac{1+x}{1+\sqrt{x}+x}\)
b/ Giải phương trình bậc 2 thì dễ rồi ha
c/ \(\frac{1+x}{1+\sqrt{x}+x}>\frac{2}{3}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)đung vì x khac 1
Phương trình bậc hai là\(x-\sqrt{6x}+1=0\) thì giải làm sao bạn ơi??
a)\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{2}}\right).\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\left(ĐKXĐ:x\ne1;x\ge0\right)\)
\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\right]\)
\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}.\left[\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2\right]}{x-1}\right]\)
\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{x-1}\right]\)
\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}\left(2\sqrt{x}\right)\left(-2\right)}{x-1}\right]\)
\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{-4x}{x-1}\right]\)
\(=\frac{-\sqrt{2x}\left(\sqrt{2x}-1\right)}{\left(x-1\right)}\)
\(=\frac{\sqrt{2x}-2x}{\left(x-1\right)}\)
\(\frac{x+1}{x-1}=6\)
\(\Leftrightarrow x+1=6\left(x-1\right)\)
\(x+1=6x-6\)
\(x+1-6x+6=0\)
\(-5x+7=0\)
\(-5x=-7\)
\(x=\frac{7}{5}\)