\(\frac{10}{3}:\frac{5}{2}

Giải dùm mình nhé!!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

Ơ !!??!?!!?!! chả nhìn thấy x ở đâu cả

21 tháng 6 2016

\(\frac{10}{3}:\frac{5}{2}=\frac{10}{3}.\frac{2}{5}=\frac{20}{15}=\frac{3}{4}\)

16 tháng 6 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y-z}{2+3-5}=\frac{10}{0}\)

Vì phân số này không có nghĩa nên bạn xem lại đề nhé

16 tháng 6 2016

ADTCCDTS bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)  (và x+ y -z = 10 )

\(=>\frac{x+y-z}{2+3-5}=10\)

\(=>x=10x2=20\)

\(=>y=10x3=30\)

\(=>z=10x5=50\)

16 tháng 6 2016

\(\text{Theo bài ra, ta suy ra:}\)

\(\text{3x= 2y; 5y= 4z.}\)

\(\text{Suy ra:}\)\(\frac{x}{y}=\frac{2}{3};\frac{y}{z}=\frac{4}{5}\)

\(\text{Suy ra:}\) \(\frac{x}{y}=\frac{8}{12};\frac{y}{z}=\frac{12}{15}\)

\(\text{Suy ra: x= 8 phần; y= 12 phần; z= 15 phần}\)

\(\text{Suy ra: x+ y- z tương ứng với: 8+12-5=5 phần. }\)

\(\text{Suy ra 1 phần tương úng với:}\)\(\text{10:5=2}\)

\(\text{Suy ra: x= 2.8=16}\)

\(\text{y=2.12=24}\)

\(\text{z=2.15=30}\)

\(\text{Vậy: x=16; y=24;z=30.}\)

15 tháng 7 2015

Ta có:   \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}\)

=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}=\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{24}=5\)

=> x=5.33=165

     y=5.4=20

     z=5.5=25

 

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

4 tháng 4 2019

Trả lời giúp chúng mik đi mai thầy kiểm tra

4 tháng 4 2019

1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)

Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé

2,bài 2 để mai anh xem nha

4 tháng 7 2016

Ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)

\(\Rightarrow\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right).\left(4x+5\right)\)

\(\Rightarrow20x^2+4x+30x+6=10x^2+25x+8x+10\)

\(\Rightarrow34x+6=33x+10\)

\(\Rightarrow34x-33x=-6+10\)

\(\Rightarrow x=4\)

4 tháng 7 2016

Ta có:

\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)

\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)

\(\Rightarrow20x^2+34x+6=20x^2+33x+10\)

\(\Rightarrow\left(20x^2+34x+6\right)-\left(20x^2+33x+6\right)=\left(20x^2+33x+10\right)-\left(20x^2+33x+6\right)\)

\(\Rightarrow\left(20x^2-20x^2\right)+\left(34x-33x\right)+\left(6-6\right)=\left(20x^2-20x^2\right)+\left(33x-33x\right)+\left(10-6\right)\)

\(\Rightarrow x=4\)

Vậy x = 4.

10 tháng 12 2018

chả lời đi

10 tháng 12 2018

đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=2k,y=5k,z=7k\)

\(P=\frac{x-y+z}{x+2y-z}\Rightarrow P=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4}{5}\)

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)