K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Không tìm được x. (May be!)

14 tháng 9 2016

Chịu thôi bạn ạ

sorry nhé

5 tháng 7 2017

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)

\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)

\(\frac{2}{3}-x=-\frac{7}{6}\)

\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)

\(x=\frac{2}{3}+\frac{7}{6}\)

\(x=\frac{11}{6}\)

22 tháng 2 2020

Thay vào:

|x−1|+1−2[|x−2|+2]=−3|x−1|+1−2[|x−2|+2]=−3

⇔|x−1|−2|x−2|=−3−1+4=0⇔⇔|x−1|−2|x−2|=−3−1+4=0⇔

|x−1|−2|x−2|=0|x−1|−2|x−2|=0(1)

Chia khoảng ⎧⎩⎨⎪⎪x<1|x−1|=1−x|x−2|=2−x{x<1|x−1|=1−x|x−2|=2−x⇒(1)⇔1−x−4+2x=0⇒x=3>1⇒(1)⇔1−x−4+2x=0⇒x=3>1(LOẠI)

⎧⎩⎨⎪⎪1≤x<2|x−1|=x−1|x−2|=2−x{1≤x<2|x−1|=x−1|x−2|=2−x⇒x−1−4+2x=0⇒x=53<2⇒x−1−4+2x=0⇒x=53<2(NHẬN)

⎧⎩⎨⎪⎪x≥2|x−1|=x−1|x−2|=x−2{x≥2|x−1|=x−1|x−2|=x−2⇒x−1+4−2x=0⇒x=3>2⇒x−1+4−2x=0⇒x=3>2(nhận)

Kết luận: ⎡⎣x=53x=3

12 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

7 tháng 11 2015

a) A=x(x-2) 

Để A>0

TH1:  x>0 và x-2 < 0 ==> 0<x<2

TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;

Vậy : Để A< 0 thì 0<x<2

Để A lớn hơn hoặc bằng 0 thì :

TH1: x >=0 và x-2>=0 ===> x>=2

TH2 : x<=0 và x-2<=2 ===> x<=2

như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2

6 tháng 11 2015

để A = x.(x-2) >=0 thi

TH1

x< hoac bang 0               =>x nho hon hoc bang 2

x-2< hoac bang => x<2   =>x nho hon hoc bang 2

TH2

x> hoac bang 0

x-2> hoac bang 0 => xon hon hoac bang 2

                         Vay x lon hon hoac bang 2 hoac nho hon hoac bang 2

                                                                                                                 By Tuấn

8 tháng 8 2024

Bài 1

A = \(x\)(\(x-2\))

\(x=0\)\(x-2\) = 0 ⇒ \(x=2\)

Lập bảng ta có:

\(x\)      -   0             +                   2        +
\(x-2\)     -                    -                   0       +
A =\(x\left(x-2\right)\)      +  0             -                    0         +

Để A ≥ 0 thì  \(x\) ≥ 0 hoặc \(x\ge\) 2

Để A < 0  thì   0 < \(x\) < 2 

 

8 tháng 8 2024

Bài 1

b; \(\dfrac{-x+2}{3-x}\)   

    - \(x\) + 2 = 0 ⇒ \(x=2\)

      3 - \(x=0\) ⇒ \(x=3\)

Lập bảng:

\(x\)               2                                   3
-\(x+2\)        +     0     -                                  - 
3 - \(x\)        +           +                            0    -
A = \(\dfrac{-x+2}{3-x}\)        +            -                                  +

B > 0 ⇔   \(x< 2\) hoặc \(x>3\)

B < 0 ⇔ 2 < \(x\) < 3