Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
( ĐKXĐ : \(x\ne0,x\ne-5\) )
\(B=\dfrac{\left(x^2+2x\right).x}{2x\left(x+5\right)}+\dfrac{\left(x-5\right).2\left(x+5\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^3+2x^2+2x^2+10x-10x-50+50-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^3-x^2+5x^2-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^2\left(x-1\right)+5x\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{\left(x-1\right)\left(x+5\right)x}{2x\left(x+5\right)}\)
\(B=\dfrac{x-1}{2}\)
Câu b và c dễ vì đã có kết quả rút gọn rồi :)
a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)
\(S=\left\{1;\frac{1}{3}\right\}\)
b)\(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(S=\left\{2;-3\right\}\)
Bài 2:
a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)
\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{2}{2x+1}\)
b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)
c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)
+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)
+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)
Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)
Với các giá trị nguyên của \(x\ne-1\), để A nguyên thì \(\left(x^5+1\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^5+x^2-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^2\left(x^3+1\right)-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^2-1\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x-1\right)⋮\left(x^2-x+1\right)\)
\(\Rightarrow x\left(x-1\right)⋮\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x^2-x+1-1\right)⋮\left(x^2-x+1\right)\)
\(\Leftrightarrow1⋮\left(x^2-x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=1\\x^2-x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- \(B=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+3-1}{x+3}\)\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)
- Điều kiện \(x\ne3\) \(\Rightarrow\frac{-3}{5}=\frac{3}{x-3}\Leftrightarrow x-3=-5\Leftrightarrow x=-2\)
- \(B=\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
a) B=(\(\frac{21}{x^2-9}\)-\(\frac{x-4}{3-x}\)-\(\frac{x-1}{3+x}\)) : (1-\(\frac{1}{x+3}\)) (ĐK: x khác +-3)
=(\(\frac{21}{\left(x-3\right).\left(x+3\right)}\)+\(\frac{x-4}{x-3}\)-\(\frac{x-1}{x+3}\)) : (1-\(\frac{1}{x+3}\))
=(\(\frac{21+\left(x+4\right).\left(x+3\right)-\left(x-1\right).\left(x-3\right)}{\left(x-3\right).\left(x+3\right)}\):(\(\frac{x+3-1}{x+3}\))
=(\(\frac{3x+6}{\left(x-3\right).\left(x+3\right)}\)) . (\(\frac{x+3}{x+2}\))
=(\(\frac{3.\left(x+2\right)}{\left(x-3\right).\left(x+3\right)}\). \(\frac{x+3}{x+2}\)
=\(\frac{3}{x-3}\)
b) B=\(\frac{3}{x-3}\)=\(\frac{-3}{5}\)
(=) \(\frac{3.5}{x-3}\)=-3
(=) -3.(x-3) = 15
(=) -3x=6
(=) x=-2
vậy x=2 thì B=\(\frac{-3}{5}\)
c) B=\(\frac{3}{x-3}\)<0
(=) 3 < x - 3
(=) -x < - 3 - 3
(=) x > 6
Vậy với x > 6 thì B < 0
\(\frac{x-1}{x+1}>0\left(ĐK:x\ne-1\right)\)
\(\Rightarrow\hept{\begin{cases}x-1>0\\x+1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x+1< 0\end{cases}}\)
\(\Leftrightarrow x>1\) hoặc \(x< -1\)
Vậy :..........