K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

\(B=\frac{x-9}{7-x}\Leftrightarrow x-9⋮7-x\Leftrightarrow\hept{\begin{cases}x⋮7-x\\9⋮7-x\end{cases}}\)

\(9⋮7-x\Leftrightarrow x-7\inƯ\left(9\right)=\left\{1;3;9\right\}\Leftrightarrow x\in\left\{8;10;16\right\}\)

24 tháng 10 2016

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

24 tháng 10 2016

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm 

6 tháng 7 2016

2.

\(\frac{3n+9}{n-4}\in Z\)

\(\Rightarrow3n+9⋮n-4\)

\(\Rightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)\)

\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)

\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)

\(B=\frac{6n+5}{2n-1}\in Z\)

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow6n-3+8⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

\(\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

\(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

 

1 tháng 8 2019

\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)

\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)

\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)

\(=5+\frac{4}{x+1}\)

\(\Rightarrow A=5+\frac{4}{x+1}\)

Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)

A nguyên

=>10x-15+6 chia hết cho 2x-3

=>\(2x-3\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;1;3;0\right\}\)

8 tháng 7 2016

\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)

( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )

\(\Rightarrow n\in\left\{0;1\right\}\)

( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )

8 tháng 7 2016
  • \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Để A nguyên thì \(\frac{21}{n-4}\) nguyên

=>21 chia hết cho n-4

=>n-4\(\in\)Ư(21)

=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)

  • \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B nguyên thì \(\frac{8}{2n-1}\) nguyên

=>8 chia hết cho 2n-1

=>2n-1\(\in\)Ư(8)

=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)

Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)

Từ (1) và (2) => n=1 thì A và B nguyên

n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)

           \(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)

Kết luận:n=1 thì A=-4 và B=11

16 tháng 9 2021

\(C=\dfrac{10-9}{2x-3}=\dfrac{1}{2x-3}\in Z\)

\(\Rightarrow\left(2x-3\right)\inƯ\left(1\right)=\left\{1;-1\right\}\)

Do \(x\in Z\)

\(\Rightarrow x\in\left\{1;2\right\}\)