\(\dfrac{3x^2-2}{3x^2+1}\) là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải: 

Bổ sung thêm ĐK $x$ nguyên

$P=\frac{(3x^2+1)-3}{3x^2+1}=1-\frac{3}{3x^2+1}$

Để $P$ là số nguyên thì $\frac{3}{3x^2+1}$ là số nguyên 

$\Rightarrow 3x^2+1$ là ước dương của $3$

$\Rightarrow 3x^2+1\in\left\{1;3\right\}$

$\Rightarrow x^2\in\left\{0; \frac{2}{3}\right\}$

Vì $x$ nguyên nên $x^2=0$

$\Rightarrow x=0$ 

Thử lại thấy thỏa mãn.

1 tháng 2 2024

Mình ko bit nha bạn

Mình đang đi tra bài này

3 tháng 7 2016

A= -5/3

B=-4/3

C=-3

ĐÚNG ĐÓ NHA TÓ SÁT THỦ TOÁN ĐÂY CẦN GIUPS THÌ LIÊN HỆ NHA

3 tháng 7 2016

C= x+3/2x-2

   = (2x-2).2+2/2x-2

   =2x-2/2x-2 + 2+2/2x-2

    = 1+      2+2/2x+2

    bảng tự kẻ ra nha

15 tháng 5 2016

để A\(\in\)Z

=>5 chia hết x-2

=>x-2\(\in\){1,-1,5,-5}

=>x\(\in\){3,1,7,-3}

\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)

=>4 chia hết x-5

=>x-5\(\in\){1,-1,2,-2,4,-4}

=>x\(\in\){6,4,7,3,9,1}

B tương tự nhé

16 tháng 5 2016

bạn làm sai rồi

giá trị nhỏ nhất lớn nhất mà chưa học à

28 tháng 10 2018

\(A=\frac{5n-7}{n+2}=\frac{5\left(n+2\right)-17}{n+2}=5-\frac{17}{n+2}\)

DO 5 là số nguyên \(\Rightarrow\frac{1}{n+2}\)nguyên 

\(\Rightarrow n+2\inƯ\left(1\right)\)

\(\Rightarrow n+2\in\left\{1,-1\right\}\)

\(\Rightarrow n\in\left\{-1,-3\right\}\)

VẬY .....

TỰ KL NHA BN!

#HUYBIP#

28 tháng 10 2018

CTV ơi ới ời 

3 tháng 5 2017

a) Ta có \(\frac{x-3}{x-2}=\frac{\left(x-2\right)-1}{x-2}=1-\frac{1}{x-2}\)

Để \(1-\frac{1}{x-2}\in Z\Rightarrow x-2\inƯ\left(1\right)\Rightarrow x-2\)thuộc 1;-1

+) Với x-2=1 thì \(x=3\)

+) Với x-2=-1 thì \(x=1\)

22 tháng 3 2016

tớ làm song bài này lâu rôi

22 tháng 3 2016

A =15/x+2 + 14/x+2 = 29/x+2

b) x+2 là U(29) = { -1;1;-29;29}

=> x ={ -3;-1;-31;27}

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

16 tháng 9 2018

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

16 tháng 9 2018

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)