K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

\(a,\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) \(\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\\ =\sqrt{x}\)

\(b,\dfrac{1-2\sqrt{x}+x}{1-\sqrt{x}}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\dfrac{1^2-2\sqrt{x}+\sqrt{x^2}}{1-\sqrt{x}}\\ =\dfrac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\\ =1\)

AH
Akai Haruma
Giáo viên
10 tháng 6 2021

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

10 tháng 6 2021

tớ hi vọng cậu thông cảm cho tớ, tớ không sử dụng kí hiệu tốt được

29 tháng 10 2023

\(\dfrac{x+2\sqrt{x}}{\sqrt{x}-1}=8\left(x\ge0;x\ne1\right)\)

\(\Leftrightarrow x+2\sqrt{x}=8\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+2\sqrt{x}=8\sqrt{x}-8\)

\(\Leftrightarrow x+2\sqrt{x}-8\sqrt{x}+8=0\)

\(\Leftrightarrow x-6\sqrt{x}+8=0\)

\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\left(tm\right)\)

Vậy: ... 

DT
29 tháng 10 2023

\(\dfrac{x+2\sqrt{x}}{\sqrt{x}-1}=8\left(x\ge0,x\ne1\right)\\ < =>x+2\sqrt{x}=8\sqrt{x}-8\\ < =>x-6\sqrt{x}+8=0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\left(TMDK\right)\)

\(=>S=\left\{4;16\right\}\)

2: =>2x^2-8x+4=x^2-4x+4 và x>=2

=>x^2-4x=0 và x>=2

=>x=4

3: \(\sqrt{x^2+x-12}=8-x\)

=>x<=8 và x^2+x-12=x^2-16x+64

=>x<=8 và x-12=-16x+64

=>17x=76 và x<=8

=>x=76/17

4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)

=>x^2-3x-2=x-3 và x>=3

=>x^2-4x+1=0 và x>=3

=>\(x=2+\sqrt{3}\)

6:

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)

=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)

=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)

=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)

=>-2*căn x-1=2

=>căn x-1=-1(loại)

=>PTVN

29 tháng 7 2023

1) ĐK: \(x\ge\dfrac{5}{2}\)

pt <=> \(x-4=\sqrt{2x-5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=7

2) ĐK: \(2x^2-8x+4\ge0\)

pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=4

3) ĐK: \(x\ge3\)

pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\) 

Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)

biểu thức B đâu rồi bạn

28 tháng 6 2017

đăng ít 1 thôi

10 tháng 9 2020

sao nhiều thế