K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

\(a,\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) \(\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\\ =\sqrt{x}\)

\(b,\dfrac{1-2\sqrt{x}+x}{1-\sqrt{x}}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\dfrac{1^2-2\sqrt{x}+\sqrt{x^2}}{1-\sqrt{x}}\\ =\dfrac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\\ =1\)

29 tháng 10 2023

\(\dfrac{x+2\sqrt{x}}{\sqrt{x}-1}=8\left(x\ge0;x\ne1\right)\)

\(\Leftrightarrow x+2\sqrt{x}=8\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+2\sqrt{x}=8\sqrt{x}-8\)

\(\Leftrightarrow x+2\sqrt{x}-8\sqrt{x}+8=0\)

\(\Leftrightarrow x-6\sqrt{x}+8=0\)

\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\left(tm\right)\)

Vậy: ... 

DT
29 tháng 10 2023

\(\dfrac{x+2\sqrt{x}}{\sqrt{x}-1}=8\left(x\ge0,x\ne1\right)\\ < =>x+2\sqrt{x}=8\sqrt{x}-8\\ < =>x-6\sqrt{x}+8=0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\left(TMDK\right)\)

\(=>S=\left\{4;16\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 6 2021

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

10 tháng 6 2021

tớ hi vọng cậu thông cảm cho tớ, tớ không sử dụng kí hiệu tốt được

1 tháng 7 2023

bạn gõ đề bằng latex để rõ đề

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

Đề bài yêu cầu gì?

12 tháng 7 2023

Rút gọn biểu thức

5 tháng 8 2020

\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)

đề bài là thế này ạ!?

12 tháng 7 2023

gõ latex đi b=)

12 tháng 7 2023

\(A=\sqrt{x}+1\) (đã thu gọn)

\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)

\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)

\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)

\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)

\(A=1-\sqrt{x}\) (đã thu gọn)

\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)