Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 - 2x = -(2x - 1)
= -(2x + 6 - 7)
= -(2x + 6) + 7
= -2(x + 3) + 7
Để B nguyên thì (1 - 2x) ⋮ (x + 3)
⇒ 7 ⋮ (x + 3)
⇒ x + 3 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ x ∈ {-10; -4; -2; 4}
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên
và x2 luôn tự nhiên => 5x âm
=> GTTĐ của x2 < GTTĐ của 5x
=> x < 5
=> x thuộc {4; 3; 2; 1;....}
Vậy....
Ta có : A = x2 + 5x
=> A = x(x + 5)
Để A nhận gt âm thì sảy ra 2 trường hợp
Th1 : \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-5\end{cases}\Rightarrow}-5< x< 0}\)
Th2 : \(\hept{\begin{cases}x>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -5\end{cases}}}\) (loại)
Dương với 0 tương tự
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
Ta có : B = 2x+1/x-3 = (2x-6)+7/x-3 = 2+ 7/x-3
Để B nhận giá trị nguyên thì x-3 thuộc Ư(7) = (+-1;+-7)
suy ra : x-3=-1 => x=2 x-3=1 => x=4
x-3=-7 => x=-4 x-3=7 => x=10
Vậy x =(-4;2;4;10) thì B nhận giá trị nguyên
1) \(M=\frac{x-1}{x-5}=\frac{\left(x-5\right)+4}{x-5}=1+\frac{4}{x-5}\)
Vậy để M nguyên thì \(x-5\inƯ\left(4\right)\)
Mà Ư(4)={1;-1;2;-2;4;-4}
Ta có bảng sau:
x-5 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 6 | 4 | 7 | 3 | 9 | 1 |
Vậy x={1;3;4;6;7;9}
2) Để M âm
\(\Leftrightarrow\)\(\frac{x-1}{x-5}< 0\)
\(\Leftrightarrow\begin{cases}x-1>0\\x-5< 0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\x-5>0\end{cases}\)
\(\Leftrightarrow1< x< 5\)
hố hố..................................................................
giúp
B = \(\dfrac{1-2x}{x+3}\) (\(x\) ≠ - 3)
B nguyên âm khi và chỉ 1 - 2\(x\) ⋮ \(x+3\) và B = \(\dfrac{1-2x}{x+3}\) < 0
-2(\(x\) + 3) + 7 ⋮ \(x+3\) ⇒ 7 ⋮ \(x+3\)
\(x+3\) \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
Theo bảng trên ta có: \(x\) \(\in\) {-10; -4; 4}}
Vậy \(x\) \(\in\) {-10; -4; 4}