K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Thay \(x=\dfrac{1}{25}\) vào C, ta được:

\(C=\left(\dfrac{1}{5}+2\right):\left(\dfrac{1}{5}-3\right)=\dfrac{11}{5}:\dfrac{-14}{5}=-\dfrac{11}{14}\)

2: Để C=-2 thì \(\sqrt{x}+2=-2\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow\sqrt{x}+2+2\sqrt{x}-6=0\)

\(\Leftrightarrow3\sqrt{x}=4\)

hay \(x=\dfrac{16}{9}\)

Để \(C=\dfrac{7}{5}\) thì \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{7}{5}\)

\(\Leftrightarrow7\sqrt{x}-21=2\sqrt{x}+10\)

\(\Leftrightarrow5\sqrt{x}=31\)

hay \(x=\dfrac{961}{25}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=x+\sqrt{x}\) có điều kiện xác định là: \(x\ge0\)

\(\Rightarrow A_{min}=0\) khi x = 0

\(B=x+5\sqrt{x+7}\)  có điều kiện xác định là: \(x\ge-7\)

\(\Rightarrow B_{min}=-7+5\cdot0=-7\) khi x = -7

\(C=2x-6\sqrt{x+1}\) có điều kiện xác định là \(x\ge-1\)

\(\Rightarrow C_{min}=2\cdot\left(-1\right)-6\cdot0=-2\) khi x = -1

\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)

Để A>B thì A-B>0

=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)

=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)

=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)

=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)

TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)

TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

24 tháng 4 2021

Ta có: \(\sqrt{7}<8.\sqrt{x-3}\)

         \(\Leftrightarrow 7<64.(x-3)\)

         \(\Leftrightarrow \frac{7}{64}<(x-3)\)

         \(\Leftrightarrow \frac{7}{64}+3< x\)

         \(\Leftrightarrow \frac{199}{64}< x\)  

Vậy \(x> \frac{199}{64}\)