Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
a) số lẻ wa
b)(x - 1)3 - (x + 3) . (x2 - 3x +9) + 3 . (x + 2) . (x - 2) = 2
\(VT=3x-40\)
\(\Leftrightarrow3x-40=2\)
\(\Leftrightarrow3x=42\)
\(\Leftrightarrow x=14\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x-2=0\)
\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6x+12+3x-2=0\)
\(1+1+6x+3x+12-2=0\)
\(9x+12=0\)
\(9x=-12\)
\(x=\frac{-4}{3}\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x-2=0\)
\(\Leftrightarrow\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x=0+2\)
\(\Leftrightarrow\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x=2\)
\(\Leftrightarrow9x+14=2\)
\(\Leftrightarrow9x=2-14\)
\(\Leftrightarrow9x=-12\)
\(\Leftrightarrow x=\frac{-12}{9}=\frac{-4}{3}\)
\(\Rightarrow x=\frac{-4}{2}\)
a) (x + 3)2 - 2(x + 3)(x - 2) + (x - 2)2
= (x + 3 - x + 2)2 = 52 = 25
b) (2x + 5)2 + 2(2x + 5)(3x - 1) + (3x - 1)2
= (2x + 5 + 3x - 1)2 = (5x + 4)2
\(\left(\dfrac{1}{3}.x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\left(\dfrac{1}{3}.x\right)^3+\left(2y\right)^3=\dfrac{1}{27}x^3+8y^3\)
b: \(f\left(x\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
\(x^2-9=0\)
⇔ \(x^2-3^2=0\)
⇔ \(\left(x-3\right)\left(x+3\right)=0\)
⇒ \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x=\pm3\)
(x+2)^2+(x-3)^2-2(x-1)(x+1)=9
=>x2+4x+4+x2-6x+9-2x2+2=9
=>(x2+x2-2x2)+(4x-6x)+4+9+2=9
=>-2x+15=9
=>-2x=-6
=>x=3
(x+2)^2+(x-3)^2-2(x-1)(x+1)=9 =>x2+4x+4+x2-6x+9-2x2+2=9 =>(x2+x2-2x2)+(4x-6x)+4+9+2=9 =>-2x+15=9 =>-2x=-6 =>x=3