\(\frac{1}{3}\))=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\hept{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}=>\hept{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}=>\hept{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}}}\)

vậy x  \(\in\)\(\left(\frac{1}{5};\frac{1}{6}\right)\)

9 tháng 9 2019

\(2^{x+2}+2^{x+1}-2^x=40\)

\(\Rightarrow2^x\left(2^2+2-1\right)=40\)

\(\Rightarrow2^x=8\)

\(\Rightarrow x=3\)

9 tháng 9 2019

2x+2 + 2x+1 - 2x = 40

2x.22+2x.2-2x=40

2x.(4+2-1)=40

2x.5=40

2x=8

2x=23

x=3

vậy x=3

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

15 tháng 1 2020

bài 1 : 

a, A = 3|2x - 1| - 5 = 0

có 3|2x - 1| >

=> A > -5

xét A = -5 khi 

|2x - 1| = 0

=> 2x - 1 = 0

=> 2x = 1

=> x = 1/2

vậy Min A = -5 khi x = 1/2

b, c, d, làm tương tự

17 tháng 1 2020

Bài 1:

\(a)A=3|2x-1|-5\)

Vì \(|2x-1|\ge0\)\(\forall x\)

\(\Rightarrow3|2x-1|\ge0\) \(\forall x\)

\(\Rightarrow3|2x-1|-5\ge-5\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}\)

\(b)x^2+3|y-2|-1\)

Vì \(\hept{\begin{cases}x^2\ge0\forall x\\3|y-2|\ge0\forall y\end{cases}}\)

\(\Rightarrow x^2+3|y-2|-1\ge-1\) \(\forall x,y\)

Dấu '=' xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy \(Min_B=-1\Leftrightarrow x=0,y=2\)

\(c)\left(2x^2+1\right)^4-3\)

Vì \(\left(2x^2+1\right)^4\ge0\)\(\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x^2+1=0\)

\(\Leftrightarrow2x^2=-1\)

\(\Leftrightarrow x^2=-\frac{1}{2}\left(voli\right)\)

Vậy không tìm được gt x

\(d)D=|x-\frac{1}{2}|+\left(y+2\right)^2+11\)

Vì \(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow|x-\frac{1}{2}|+\left(y+2\right)^2+11\ge11\) \(\forall x,y\)

Dấu '=' xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)

Vậy \(Min_D=11\Leftrightarrow x=\frac{1}{2},y=-2\)

17 tháng 1 2020

Bài 2:

\(a)A=10-5|x-2|\)

Vì \(|x-2|\ge0\)\(\forall x\)

\(\Rightarrow5|x-2|\ge0\)\(\forall x\)

\(\Rightarrow\)\(10-5|x-2|\le10\) \(\forall x\)

Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(Max_A=10\Leftrightarrow x=2\)

\(b)B=5-|2x-1|^2\)

Vì \(|2x-1|^2\ge0\)\(\forall x\)

\(\Rightarrow5-|2x-1|^2\le5\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_B=5\Leftrightarrow x=\frac{1}{2}\)

\(c)C=\frac{1}{|x-2|+3}\)

Vì \(|x-2|\ge0\)\(\forall x\)

\(\Rightarrow|x-2|+3\ge3\) \(\forall x\)

\(\Rightarrow\frac{1}{|x-2|+3}\le\frac{1}{3}\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(Max_C=\frac{1}{3}\Leftrightarrow x=2\)

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

Câu 1:thực hiện tínhC=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))Câu 2:tìm xa)   (x-2)(x+3) <0b)   3x+2+4.3x+1+3x-1Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,zCâu 5:  Cho tam giác ABC...
Đọc tiếp

Câu 1:thực hiện tính

C=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))

Câu 2:tìm x

a)   (x-2)(x+3) <0

b)   3x+2+4.3x+1+3x-1

Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)

Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,z

Câu 5:  Cho tam giác ABC vuông cân tại A.Gọi D là một điểm bất kì trên cạnh BC (D khác B và C ).Vẽ hai tia Bx;Cy vuông góc với BC và nằm trên cùng một nửa mặt phẳng có bờ chứa BC và điểm  A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) \(\Delta\)AMB =\(\Delta\)ADC

b) A là trung điểm của MN

c) chứng minh \(\Delta\)vuông cân

Câu 6:Cho\(\Delta\)ABC cân tại A=100 độ .Gọi M là 1 điểm nằm trong tam giác sao cho góc MBC =10 độ ;góc MCB=20 độ .Tính góc AMB

 

0
14 tháng 8 2018

giup minh oi minh dang gap