Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
x3 - 0,25x = 0
x2.x - 0,25x = 0
x(x2 - 0,25) = 0
=> x = 0 hoặc x2 - 0,25 = 0
Với x2 - 0,25 = 0:
x2 = 0,25
\(\sqrt{x^2}=\sqrt{0,25}\)
x = \(\frac{1}{2}\)
Vậy x = 0 và x = \(\frac{1}{2}\)
x3 - 0, 25x = 0
<=> x( x2 - 0, 25 ) = 0
<=> x( x2 - 1/4 ) = 0
<=> x( x - 1/2 )( x + 1/2 ) = 0
<=> x = 0 hoặc x - 1/2 = 0 hoặc x + 1/2 = 0
<=> x = 0 hoặc x = ±1/2
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Ta thấy: \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Do đó: \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\). Vậy ...
<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0
<=>(x+y+z)2+(x+1)2+(y+2)2=0
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)
=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)
1
C = ( 2a - 2 ) (2a + 2 ) - a ( 3 + 4a ) + 3a + 1
C = 4a2 - 4 - 3a - 4a2 + 3a + 1
C = -3 ko phụ thuộc của x
2. ( x + 3 ) ( x - 1 ) - x ( x - 5 ) = 11
( x2 + 3x - x - 3 ) - x2 + 5x = 11
7x = 14
x = 2
\(C=\left(2a-2\right)\left(2a+3\right)-a\left(3+4a\right)+3a+1\)
\(\Leftrightarrow C=2a\left(2a-2\right)+3\left(2a-2\right)-3a-4a^2+3a+1\)
\(\Leftrightarrow C=4a^2-4a+6a-6-3a-4a^2+3a+1\)
\(\Leftrightarrow C=\left(4a^2-4a^2\right)+\left(3a-3a\right)+\left(6a-4a\right)+\left(1-6\right)\)
\(\Leftrightarrow C=0+0+2a-5\)
\(\Leftrightarrow C=2a-5\)
Vậy giá trị của C phụ thuộc vào giá trị của biến
\(5x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow\left(4x^2+9y^2-12xy\right)+\left(x^2-6x+9\right)=0\)
\(\Rightarrow\left(2x-3y\right)^2+\left(x-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}\Rightarrow\hept{\begin{cases}2x=3y\\x=3\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\x=3\end{cases}}}\)
Để x = x ! Thì x \(\le\)2. Nếu x > 2 thì 3 \(\ne\)1 x 2 x3.
- Nếu x = 2 thì 2 = 1 x 2 ( thỏa mãn )
\(\Leftrightarrow\)x = 2
- Nếu x = 1 thì 1 = 1 ( thỏa mãn )
\(x=\hept{\begin{cases}1\\2\end{cases}}\)
HT
??????? hỏi j dễ zậy