Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$4(x+5)(x+6)(x+10)(x+12)=3x^2$
$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$
$4(x^2+17x+60)(x^2+16x+60)=3x^2$
Đặt $x^2+16x+60=a$ thì pt trở thành:
$4(a+x)a=3x^2$
$4a^2+4ax-3x^2=0$
$4a^2-2ax+6ax-3x^2=0$
$2a(2a-x)+3x(2a-x)=0$
$(2a-x)(2a+3x)=0$
Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$
$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$
Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$
$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$
b.
$(x+1)(x+2)(x+3)(x+6)=120x^2$
$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$
$(x^2+7x+6)(x^2+5x+6)=120x^2$
Đặt $x^2+6=a$ thì pt trở thành:
$(a+7x)(a+5x)=120x^2$
$\Leftrightarrow a^2+12ax-85x^2=0$
$\Leftrightarrow a^2-5ax+17ax-85x^2=0$
$\Leftrightarrow a(a-5x)+17x(a-5x)=0$
$\Leftrightarrow (a-5x)(a+17x)=0$
Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$
$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$
Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$
$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$
Vậy.........
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
\(40^2-39^2+38^2-37 ^2+...+2^2-1^2\)
= \(\left(40+39\right)\left(40-39\right)+\left(38+37\right)\left(38-37\right)+....+\left(2+1\right)\left(2-1\right)\)
= \(79.1+75.1+....+3.1\)
= \(79+75+....+3\)
= \(\left(79+3\right)\left[\left(79-3\right):4+1\right]:2\)
= \(82.20:2\)
= \(820\)
\(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
=> \(9x^2-6x+1+2x^2+12x+18-11x^2+11=6\)
=> \(6x+30=6\)
=> \(6x=6-30\)
=> \(6x=-24\)
=> \(x=-24:6=-4\)
\(\text{a) }40^2-39^2+38^2-37^2+...+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1.79+1.75+...+1.3\)
\(=79+75+...+3\)
\(\text{Từ 3 đến 79 có: (79 - 3) : 2 + 1 = 39 (số hạng)}\)
\(\text{Tổng là: }\frac{\left(79+3\right)\times39}{2}=1599\)
\(\text{b) }\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow\left(9x^2-6x+1\right)+2\left(x^2+6x+9\right)+11\left(1-x^2\right)=6\)
\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18+11-11x^2=6\)
\(\Leftrightarrow\left(9x^2+2x^2-11x^2\right)+\left(-6x+12x\right)+\left(1+18+11\right)=6\)
\(\Leftrightarrow6x+30=6\)
\(\Leftrightarrow6x=6-30\)
\(\Leftrightarrow6x=-24\)
\(\Leftrightarrow x=-4\)
câu 1 là : Tìm x để A khác 0 \(A=\frac{-4x^2}{3-x}\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x^2+x\right)-6=0\)
\(\Leftrightarrow\left(x^2+x+3\right)\left(x^2+x-2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
\(\left(x^2+x\right)\left(x^2+x+1\right)=0\)
\(x\left(x+1\right)\left(x^2+x+1\right)=0\)
=> x=0 hoặc x+1=0 (do \(x^2+x+1\ne0\))
x=-1
Vậy...