Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}+\dfrac{x+2024}{2}=0\)
\(\Leftrightarrow(\dfrac{x+1}{2015}+1)+(\dfrac{x+2}{2014}+1)+(\dfrac{x+3}{2013}+1)+(\dfrac{x+4}{2012}+1)+\dfrac{x+2024}{2}-4=0\)\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}+\dfrac{x+2016}{2}=0\)\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}\right)=0\)
Hiển nhiên: \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}>0\)
\(\Leftrightarrow x+2016=0\Leftrightarrow x=-2016\)
(x-1)/2015 + x/2014 + 1/503 - (x-3)/2013 - x/2012 - 1/1007 =0
(x-2016)/2015 + (x-2016)/2014 - (x-2016)/2012 - (x-2016)/2013 = 0
(x-2016) ( 1/2015 + 1/2016 - 1/2013 - 1/2012) = 0
Mà 1/2015 + 1/2016 - 1/2013 - 1/2012 khác 0
Suy ra x -2016=0
x=2016
Chỗ nào thắc mắc nhớ hỏi mik nhe!
\(b)4x\left(x-2014\right)-\left(x-2014\right)=0\)
\(\left(4x-1\right)\left(x-2014\right)=0\)
\(\Leftrightarrow TH1:4x-1=0\)
\(4x=1\)
\(x=\frac{1}{4}\)
\(TH2:x-2014=0\)
\(x=2014\)
Vậy \(x\in\left\{\frac{1}{4};2014\right\}\)
\(b,4x\left(x-2014\right)-x+2014=0\)
\(\Leftrightarrow\left(x-2014\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2014\\x=\frac{1}{4}\end{cases}}\)
\(c,\left(x+1\right)^2=x+1\)
\(\Leftrightarrow\left(x+1\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(\dfrac{x+1}{2020}+\dfrac{x-1}{2018}=\dfrac{x+5}{2024}+\dfrac{x-5}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2020}-1\right)+\left(\dfrac{x-1}{2018}-1\right)-\left(\dfrac{x+5}{2024}-1\right)-\left(\dfrac{x-5}{2014}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2019}{2020}+\dfrac{x-2019}{2018}-\dfrac{x-2019}{2024}-\dfrac{x-2019}{2014}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\dfrac{1}{2020}+\dfrac{1}{2018}-\dfrac{1}{2024}-\dfrac{1}{2014}\right)=0\)
\(\Leftrightarrow x-2019=0\\ \Leftrightarrow x=2019\)
Ta có : \(\frac{x+2}{2021}+\frac{x+5}{2024}+\frac{x+3}{2022}=3\)
=> \(\left(\frac{x+2}{2021}-1\right)+\left(\frac{x+5}{2024}-1\right)+\left(\frac{x+3}{2022}-1\right)=3-1-1-1\)
\(\Rightarrow\frac{x-2019}{2021}+\frac{x-2019}{2024}+\frac{x-2019}{2022}=0\)
\(\Rightarrow\left(x-2019\right)\left(\frac{1}{2021}+\frac{1}{2024}+\frac{1}{2022}\right)=0\)
Vì \(\frac{1}{2021}+\frac{1}{2024}+\frac{1}{2022}\ne0\)
=> x - 2019 = 0
=> x = 2019