K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)

14 tháng 10 2021

Bài 2:

a) \(=x^2-4-x^2-2x-1=-2x-5\)

b) \(=8x^3-1-8x^3-1=-2\)

Bài 3:

a) \(\Rightarrow x^3+8-x^3+2x=15\)

\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)

b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)

\(\Rightarrow7x=14\Rightarrow x=2\)

15 tháng 7 2023

\(A=\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)+15\)

\(A=x^2+4x+4-\left(x^2-x+3x-3\right)+15\)

\(A=\left(x^2-x^2\right)+\left(4x+x-3x\right)+\left(15+3+4\right)\)

\(A=2x+22\)

______________________

\(B=\left(x+1\right)\left(x-1\right)-\left(x+4\right)^2-6\)

\(B=\left(x^2-1\right)-\left(x^2+8x+16\right)-6\)

\(B=\left(x^2-x^2\right)-8x-\left(1+16+6\right)\)

\(B=-8x-23\)

_________________

\(C=\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2\)

\(C=\left[\left(3x\right)^2-2^2\right]-\left(9x^2-6x+1\right)\)

\(C=\left(9x^2-9x^2\right)+6x-\left(4+1\right)\)

\(C=6x-5\)

15 tháng 7 2023

a) Rút gọn biểu thức A = (x + 2)2 - (x + 3)(x - 1) + 15:

Bắt đầu bằng việc mở ngoặc:
A = (x^2 + 4x + 4) - (x^2 + 2x - 3x - 3) + 15

Tiếp theo, kết hợp các thành phần tương tự:
A = x^2 + 4x + 4 - x^2 - 2x + 3x + 3 + 15

Tiếp tục đơn giản hóa:
A = x^2 - x^2 + 4x - 2x + 3x + 4 + 3 + 15

Kết quả cuối cùng:
A = 5x + 19

b) Rút gọn biểu thức B = (x - 1)(x + 1) - (x + 4)2 - 6:

Bắt đầu bằng việc mở ngoặc:
B = (x^2 - 1) - (x^2 + 4x + 4) - 6

Tiếp theo, kết hợp các thành phần tương tự:
B = x^2 - 1 - x^2 - 4x - 4 - 6

Tiếp tục đơn giản hóa:
B = x^2 - x^2 - 4x - 4 - 6 - 1

Kết quả cuối cùng:
B = -4x - 11

c) Rút gọn biểu thức C = (3x - 2)(3x + 2) - (3x - 1)2:

Bắt đầu bằng việc mở ngoặc:
C = (9x^2 - 4) - (9x^2 - 6x + 1)

Tiếp theo, kết hợp các thành phần tương tự:
C = 9x^2 - 4 - 9x^2 + 6x - 1

Tiếp tục đơn giản hóa:
C = 9x^2 - 9x^2 + 6x - 4 - 1

Kết quả cuối cùng:
C = 6x - 5

4 tháng 10 2020

a) (x + 3)3 - x(3x + 1)2  + (2x + 1)(4x2 - 2x + 1) = 28

=> x3 + 9x2 + 27x + 27 - x(9x2 + 6x + 1) +(2x + 1)[(2x)2 - 2.x.1 + 12 ] = 28

=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + (2x)3 + 13 = 28

=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 + 1 = 28

=> (x3 - 9x3  + 8x3) + (9x2 - 6x2) + (27x - x) + (27 + 1) = 28

=> 3x2 + 26x + 28 = 28

=> 3x2 + 26x = 0

=> 3x2 + 26x = 0

=> \(3x\left(x+\frac{26}{3}\right)=0\)

=> 3x = 0 hoặc x + 26/3 = 0

=> x = 0 hoặc x = -26/3

b) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)

=> \(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)

=> \(x^6-3x^4+3x^2-1-x^6+1=0\)

=> \(\left(x^6-x^6\right)-3x^4+3x^2+\left(-1+1\right)=0\)

=> \(-3x^4+3x^2=0\)

=> \(-\left(3x^4-3x^2\right)=0\)

=> \(3x\left(x^3-x\right)=0\)

=> \(\orbr{\begin{cases}3x=0\\x^3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x\left(x^2-1\right)=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)

\(\Leftrightarrow x=25\)

b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)

\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)

\(\Leftrightarrow-9x=1\)

hay \(x=-\dfrac{1}{9}\)

31 tháng 8 2021

a: ta có: (2x−5)(x+2)−2x(x−1)=15

⇔2x2+4x−5x−10−2x2+2x=15

⇔x=25

b: Ta có: (5−2x)(2x+7)=4x2−25

⇔4x2−25+(2x−5)(2x+7)=0

22 tháng 5 2022

a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15

⇔4x2 + 4x + (9 – 4x2) = 15

⇔ 4x2 + 4x + 9 – 4x2 = 15

⇔4x = 15 – 9

⇔x=1,5

b)3x(x – 20012) – x + 20012 = 0

⇔3x(x – 20012) – (x – 20012) = 0

⇔(x – 20012)(3x – 1) = 0

⇔x – 20012 = 0 hay 3x – 1 = 0

⇔x = 20012 hoặc x = \(\dfrac{1}{2}\)

22 tháng 5 2022

`a)4x(x+1)+(3-2x)(3+2x)=15`

`<=>4x^2+4x+9-4x^2=15`

`<=>4x=6`

`<=>x=3/2`

Vậy `S={3/2}`

`b)3x(x-20012)-x+20012=0`

`<=>3x(x-20012)-(x-20012)=0`

`<=>(x-20012)(3x-1)=0`

`<=>` $\left[\begin{matrix} x=20012\\ x=\dfrac{1}{3}\end{matrix}\right.$

Vậy `S={1/3;20012}`