Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
\(b,=1^2-\left(x-y\right)^2=\left(1+x-y\right)\left(1-x+y\right)\)
\(c,=\left(x^2+1\right)^2-\left(2x\right)^2=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)^2\left(x-1\right)^2\)
Ta có:
\(x^3+x^2-4x=4\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow x-2=0;x+2=0;x+1=0\)
\(\Rightarrow x\in\left\{2;-2;-1\right\}\)
a)\(2.\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right).\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
b)\(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x.\left(x-4\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\frac{x=4}{\frac{x=0}{x=-4}}}\)
c)\(x^3+x^2-4x=4\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{x=0}{x=2}\\\overline{x=-2}\end{cases}}\)
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
1: \(=\left(y-1\right)^2\)
2: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
3: =(1-2x)(1+2x)
\(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
5: \(=\left(x+3\right)^3\)
6: \(=\left(2x-y\right)^3\)
a) \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)
Vậy GTNN của P là 4 khi x = 1
b) \(Q=2x^2-6x=2x^2-6x+4,5-4,5=2.\left(x^2-3x+2,25\right)-4,5=2.\left(x-1,5\right)^2-4,5\)
Vì \(2.\left(x-1,5\right)^2\ge0\) nên \(2.\left(x-1,5\right)^2-4,5\ge-4,5\)
Vậy GTNN của Q là -4,5 khi x = 1,5
c) \(M=x^2+y^2-x+6y+10=\left(x^2-x+0,25\right)+\left(y^2+6y+9\right)+0,75\)
\(=\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\)
Vì \(\left(x-0,5\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\) nên \(\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\ge0,75\)
Vậy GTNN của M là 0,75 khi x = 0,5 và y = -3
Ta có : P = x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà : (x - 1)2 \(\ge0\forall x\)
Nên : (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi x = 1
2: \(ax+ay+bx+by\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(x+y\right)\left(a+b\right)\)
3: \(x\left(x-2y\right)-x+2y\)
\(=x\left(x-2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-1\right)\)
a)
<=> \(3x-12x^2+12x^2-6x=9\)
<=> \(-3x=9\)
<=> \(x=-3\)
b)
<=> \(6x-24x^2-12x+24x^2=6\)
<=> \(-6x=6\)
<=> \(x=-1\)
c)
<=> \(6x-4-3x+6=1\)
<=> \(3x+2=1\)
<=> \(x=-\frac{1}{3}\)
d)
<=> \(9-6x^2+6x^2-3x=9\)
<=> \(-3x=0\)
<=> \(x=0\)
e) KO HIỂU ĐỀ
f)
<=> \(4x^2-8x+3-\left(4x^2+9x+2\right)=8\)
<=> \(-17x+1=8\)
<=> \(x=-\frac{7}{17}\)
g)
<=> \(-6x^2+x+1+6x^2-3x=9\)
<=> \(-2x=8\)
<=> \(x=-4\)
h)
<=> \(x^2-x+2x^2+5x-3=4\)
<=> \(3x^2+4x=7\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{7}{3}\end{cases}}\)
a. \(3x\left(1-4x\right)+6x\left(2x-1\right)=9\)
\(\Rightarrow3x-12x^2+12x^2-6x=9\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
b. \(3x\left(2-8x\right)-12x\left(1-2x\right)=6\)
\(\Rightarrow6x-24x^2-12x+24x^2=6\)
\(\Rightarrow-6x=6\)
\(\Rightarrow x=-1\)
c. \(2\left(3x-2\right)-3\left(x-2\right)=1\)
\(\Rightarrow6x-4-3x+6=1\)
\(\Rightarrow3x+2=1\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=-\frac{1}{3}\)