Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^3+x^2-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(x^4+x^3+x^2-1=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)=\left(x+1\right)\left(x^3+x-1\right)\)
\(c,=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
\(d,=x^2y^2-y^2-x^2+1=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(e,4x^2+4x-15=\left(4x^2+4x+1\right)-16=\left(2x+1\right)^2-4^2=\left(2x+5\right)\left(2x-3\right)\)
\(3x^2-7x+2=\left(3x^2-6x\right)-\left(x-2\right)=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)
\(4x^2-5x+1=\left(4x^2-4x\right)-\left(x-1\right)=4x\left(x-1\right)-\left(x-1\right)=\left(4x-1\right)\left(x-1\right)\)
Phân tích à :v
a) x3 + x2 - 4x - 4 = x2( x + 1 ) - 4( x + 1 ) = ( x + 1 )( x2 - 4 ) = ( x + 1 )( x - 2 )( x + 2 )
b) x4 + x3 + x2 - 1 = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
c) x2 + 2xy + y2 - 2x - 2y + 1 = ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 = ( x + y )2 - 2( x + y ) + 12 = ( x + y - 1 )2
d) x2y2 + 1 - x2 - y2 = ( x2y2 - x2 ) - ( y2 - 1 ) = x2( y2 - 1 ) - ( y2 - 1 ) = ( y2 - 1 )( x2 - 1 ) = ( y - 1 )( y + 1 )( x - 1 )( x + 1 )
e) 4x2 + 4x - 15 = ( 4x2 + 4x + 1 ) - 16 = ( 2x + 1 )2 - 42 = ( 2x + 1 - 4 )( 2x + 1 + 4 ) = ( 2x - 3 )( 2x + 5 )
g) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )
h) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
TL:
\(4x^2-y^2+4x+1\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1+y\right)\left(2x-1-y\right)\)
\(x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+x^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+x^2-1\right)\)
2: \(ax+ay+bx+by\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(x+y\right)\left(a+b\right)\)
3: \(x\left(x-2y\right)-x+2y\)
\(=x\left(x-2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-1\right)\)