Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
Bài 1:
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
\(1,\\ a,=3x\left(x-3y\right)\\ b,=\left(x-5\right)^2-9y^2=\left(x-3y-5\right)\left(x+3y-5\right)\\ c,=3x\left(x-y\right)-2\left(x-y\right)=\left(3x-2\right)\left(x-y\right)\\ 2,\\ Sửa:x^2-6x+10=\left(x-3\right)^2+1\ge1>0,\forall x\)
1, =3x (2x -3y)
c, = 3x(x-y) -2(x-y)
= (3x-2)(x-y)
2, Ta có: x2 -6x+10= (x-3)2 +11
Nhận xét: (x-3)2 >= 0 với mọi số thực x
=> (x-3)2 +1 >= 1 >0 (đpcm)
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
a: Ta có: \(x^2-36y^2-x+6y\)
\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x+6y-1\right)\)
b: Ta có: \(16x-8x^2+x^3\)
\(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c: Ta có: \(2x^2-4xy+2y^2-18\)
\(=2\left(x^2-2xy+y^2-9\right)\)
\(=2\cdot\left[\left(x-y\right)^2-9\right]\)
\(=2\left(x-y-3\right)\left(x-y+3\right)\)
d: Ta có: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
e: Ta có: \(x^4-x^2-30\)
\(=x^4-6x^2+5x^2-30\)
\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)
\(=\left(x^2-6\right)\left(x^2+5\right)\)
f: Ta có: \(x^2-xy-2y^2\)
\(=x^2-2xy+xy-2y^2\)
\(=x\left(x-2y\right)+y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+y\right)\)
g: Ta có: \(x^4-13x^2y^2+4y^4\)
\(=x^4-4x^2y^2+4y^4-9x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2-3xy+2y^2\right)\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2-xy-2xy+2y^2\right)\)
\(=\left[x\left(x-y\right)-2y\left(x-y\right)\right]\left(x^2-3xy-2y^2\right)\)
\(=\left(x-y\right)\left(x-2y\right)\left(x^2-3xy-2y^2\right)\)
h: Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3\)
\(=\left(x^2-2x\right)^2-3\left(x^2-2x\right)+\left(x^2-2x\right)-3\)
\(=\left(x^2-2x\right)\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=\left(x^2-2x-3\right)\left(x^2-2x+1\right)\)
\(=\left(x-3\right)\left(x+1\right)\cdot\left(x-1\right)^2\)
a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x-6y-1\right)\)
b) \(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c) \(=2\left(x-y\right)^2-18\)
\(=2\left[\left(x-y\right)^2-3^2\right]\)
\(=2\left(x-y+3\right)\left(x-y-3\right)\)
a: \(x^2-36y^2-x+6y\)
\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x+6y-1\right)\)
b: \(x^3-8x^2+16x\)
\(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c: \(2x^2-4xy+2y^2-18\)
\(=2\left(x^2-2xy+y^2-9\right)\)
\(=2\left(x-y-3\right)\left(x-y+3\right)\)
d: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)
=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)
=>\(2A=4x^2+4y^2-2x^2y^2\)
=>\(A=2x^2+2y^2-x^2y^2\)
b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)
=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)
=>\(2A=4x^2+2xy-8y-2y^2\)
=>\(A=2x^2+xy-4y-y^2\)
c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)
=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)
=>\(A=-x^2y+4xy^3+2xy^2\)