Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề sai dấu, mình sửa lại rồi!
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+...+\frac{x-2017}{1}=2017\)
\(\Leftrightarrow\) \(\frac{x-1}{2017}-1+\frac{x-2}{2016}-1+\frac{x-3}{2015}-1+...+\frac{x-2017}{1}-1=0\)
\(\Leftrightarrow\) \(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+...+\frac{x-2018}{1}=0\)
\(\Leftrightarrow\) (x - 2018)\(\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)
\(\Leftrightarrow\) x - 2018 = 0
\(\Leftrightarrow\) x = 2018
Vậy S = {2018}
Chúc bn học tốt!!
Ta có \(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}.x=\frac{2018}{2019}.x\)
<=>\(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}x-\frac{2018}{2019}x=0\)
<=>x\(\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)
Vì \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\) không thể bằng 0
Vậy x=0
Ta có 1 nghiệm thỏa mãn S=\(\left\{0\right\}\)
a, \(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
<=>\(\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)
<=> \((x-2020)(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018})=0\)
<=>\(x-2020=0\)
<=> \(x=2020\)
Vậy_
b, tương tự
B. \(\frac{x+4}{2015}+1+\frac{x+3}{2016}+1=\frac{x+2}{2017}+1+\frac{x+1}{2018}+1\)
<=> \(\frac{x+2019}{2015}+\frac{x+2019}{2016}=\frac{x+2019}{2017}+\frac{x+2019}{2018}\)
<=>(x+2019).(\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)
Vì (\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)
=> x+2019>0
=>x>-2019
\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
\(\Leftrightarrow\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-3}{2018}-1\)
\(\Leftrightarrow\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)
\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
\(< =>\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-2}{2018}-1\)
\(< =>\frac{x-5-2015}{2015}+\frac{x-4-2016}{2016}=\frac{x-3-2017}{2017}+\frac{x-2-2018}{2018}\)
\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)
\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)
\(< =>\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
\(< =>x-2020=0< =>x=2020\)
mk ko chép lại đề nha:
\(\Rightarrow\)\(\frac{x-2}{2017}\)\(-1+\frac{x-3}{2016}\)\(-1=\frac{x-4}{2015}\)\(-1+\frac{x-5}{2014}\)\(-1\)
\(\Rightarrow\)\(\frac{x-2-2017}{2017}\)\(+\frac{x-3-2016}{2016}\)\(=\frac{x-4-2015}{2015}\)\(+\frac{x-5-2014}{2014}\)
\(\Rightarrow\)\(\frac{x-2019}{2017}\)\(+\frac{x-2019}{2016}\)\(-\frac{x-2019}{2015}\)\(-\frac{x-2019}{2014}\)\(=0\)
\(\Rightarrow\)\(\left(x-2019\right)\)\(\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\)\(=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-2019=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}=0\left(voli\right)\end{cases}}\)
\(\Rightarrow\)\(x-2019=0\)
\(\Rightarrow\)\(x=-2019\)
Chỗ mình nghi voli là vô lí nha
chúc bạn học tốt
a) \(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)=-3
⇔\(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)+3=0
⇔\(\frac{x+2}{2002}\)+1+\(\frac{x+5}{1999}\)+1+\(\frac{x+201}{1803}\)+1=0
⇔\(\frac{x+2004}{2002}\)+\(\frac{x+2004}{1999}\)+\(\frac{x+2004}{1803}\)=0
⇔(x+2004)(\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))=0
Mà (\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))≠0
⇒x+2004=0
⇔x=-2004
Vậy tập nghiệm của phương trình đã cho là:S={-2004}
Bài 3 :
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
Nên \(x-2017=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Bài 1 :
\(\left(8x-5\right)\left(x^2+2014\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{5}{8}\)
Chúc bạn học tốt ~
Hình như đề sai dấu, mình sửa lại rồi!
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+...+\frac{x-2017}{1}=2017\)
\(\Leftrightarrow\) \(\frac{x-1}{2017}-1+\frac{x-2}{2016}-1+\frac{x-3}{2015}-1+...+\frac{x-2017}{1}-1=0\)
\(\Leftrightarrow\) \(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+...+\frac{x-2018}{1}=0\)
\(\Leftrightarrow\) (x - 2018)\(\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)
\(\Leftrightarrow\) x - 2018 = 0
\(\Leftrightarrow\) x = 2018
Vậy S = {2018}
Chúc bn học tốt!!