Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)
=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)
=> \(9x+27+6=20x+36-21x+27\)
=> \(9x-20x+21x=27-27-6+36\)
=> \(10x=30\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)
=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
=> \(20x-30-5x+15=24x+18-510\)
=> \(20x-5x-24x=18-510+30-15\)
=> \(-9x=-477\)
=> \(x=53\)
Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)
3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)
=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)
=> \(150x-30+40x+160=84x-60+180x-180\)
=> \(150x+40x-180x-84x=-60-180-160+30\)
=> \(-74x=-370\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{840}-\frac{17}{210}=\frac{8x}{15}+\frac{19}{60}+\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{840}.840-\frac{17}{210}.840=\frac{8x}{15}.840+\frac{19}{60}.840+\frac{2}{3}.840\)
\(\Leftrightarrow x-68=448x+226+560\)
\(\Leftrightarrow x-68=448x+826\)
\(\Leftrightarrow x=448x+826+68\)
\(\Leftrightarrow x=448x+894\)
\(\Leftrightarrow-447x=894\)
=> x = -2
a) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
<=> \(\frac{5x+2\left(3-x\right)}{70}-\frac{5x-4\left(x-1\right)}{24}=\frac{35x+10+9-3x}{60}+\frac{2}{3}\)
<=> \(12\left(5x+6-2x\right)-35\left(5x-4x+4\right)\)
<=> \(14\left(35x+10+9-3x\right)+280.2\) <=> \(12\left(3x+6\right)-35\left(x+4\right)\)
<=> \(14\left(32x+19\right)+560\)
<=> \(36x+72-35x-140=448x+226+560\)
<=> \(-447x=894\)
<=> x = -2
1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)
<=> 21x - 100x + 900 = 80x + 6
<=> -79x - 80x = 6 - 900
<=> -159x = -894
<=> x = 258/53
Vậy S = {258/53}
2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5
<=> 7x2 + 2x - 7x2 + 14x = -5 + 2
<=> 16x = 3
<=> x = 3/16
Vậy S = {3/16}
3) 4(3x - 2) - 3(x - 4) = 7x+ 10
<=> 12x - 8 - 3x + 12 = 7x + 10
<=> 9x - 7x = 10 - 4
<=> 2x = 6
<=> x = 3
Vậy S = {3}
4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)
<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80
<=> 4x2 + 20x - 4x2 - 32x = -80 - 16
<=> -12x = -96
<=> x = 8
Vậy S = {8}
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{7x}{5}-\frac{x-3}{10}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}-\frac{7x}{5}+\frac{x-3}{10}+x-1=0\)
\(\Leftrightarrow\frac{20x-2\left(4-3x\right)-210x+15\left(x-3\right)+150x-150}{150}=0\)
\(\Leftrightarrow20x-8+6x-210x+15x-45+150x-150=0\)
\(\Leftrightarrow-19x-203=0\)
\(\Leftrightarrow x=-\frac{203}{19}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{203}{19}\right\}\)
\(\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{\frac{4-13x}{5}}{15}=\frac{7x}{5}-\frac{\frac{x-3}{2}}{5}-x+15\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{7x}{5}-\frac{x-3}{10}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{2x}{5}-\frac{x-3}{10}+1\)
\(\Leftrightarrow20x-2\left(4-3x\right)=60x-15\left(x-3\right)+150\)
\(\Leftrightarrow20x-8+6x=60x-15x+45+150\)
\(\Leftrightarrow26x-8=49x+195\)
\(\Leftrightarrow-8=45x+195-26x\)
\(\Leftrightarrow-8=19x+195\)
\(\Leftrightarrow-8-195=19x\)
\(\Leftrightarrow-203=19x\)
\(\Leftrightarrow x=-\frac{203}{19}\)
vậy: tập nghiệm của phương trình là: \(S=\left\{-\frac{203}{19}\right\}\)
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
\(\frac{5}{x-3}-\frac{4}{x+3}=\frac{7x}{x^2-9}\)
MTC: ( x - 3 ) ( x + 3 )
Quy đồng mẫu 2 p/số rồi khử mẫu ta có :
\(\frac{5}{x-3}-\frac{4}{x+3}=\frac{7x}{x^2-9}\)
\(\Leftrightarrow\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow5\left(x+3\right)-4\left(x-3\right)=7x\)
\(\Leftrightarrow5x+15-4x+12=7x\)
\(\Leftrightarrow x+27=7x\)
\(\Leftrightarrow-6x=-27\)
\(\Leftrightarrow x=\frac{9}{2}\)