Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\frac{1}{2}\right)^4=16\)
\(\Rightarrow\left[\begin{array}{nghiempt}\left(x+\frac{1}{2}\right)^4=2^4\\\left(x+\frac{1}{2}\right)^4=-2^4\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=2\\x+\frac{1}{2}=-2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2-\frac{1}{2}\\x=-2-\frac{1}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{5}{2}\end{array}\right.\)
( x + \(\frac{1}{2}\) )4 = 16
Vì 24 = 16 \(\Rightarrow\)x + \(\frac{1}{2}\) = 2
x = 2 - \(\frac{1}{2}\)
x = \(\frac{3}{2}\)
Ta có: \(\frac{a}{b}< \frac{a+1}{b+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}=\frac{10^{2012}+1}{2^{2013}+1}=A\)
Vậy: \(A>B\)
Ta có:
\(10A=\frac{10\left(10^{2012}+1\right)}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=\frac{10^{2013}+1}{10^{2013}+1}+\frac{9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(10B=\frac{10\left(10^{2013}+1\right)}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=\frac{10^{2014}+1}{10^{2014}+1}+\frac{9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Vì 102013+1<102014+1
\(\Rightarrow\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)
\(\Rightarrow1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
a) /2x - \(\frac{1}{3}\) / =5
\(=>\left[\begin{array}{nghiempt}2x-\frac{1}{3}=5\\2x-\frac{1}{3}=-5\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=\frac{8}{3}\\x=-\frac{7}{3}\end{array}\right.\)
b)x3 - 4x = 0
<=> x(x2 - 4) = 0
\(=>\left[\begin{array}{nghiempt}x=0\\x^2-4=0\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=0\\x=\pm2\end{array}\right.\)
\(x^2\le4\)
\(\Leftrightarrow x^2\le2^2\)
\(\Leftrightarrow x=\left\{0;1;2;-1;-2\right\}\)
Thử lại : ta được kết quả đúng như trên
Sửa lại nha :
Ta có : \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\left(1\right)\)
\(\frac{y}{z}=\frac{4}{5}\Rightarrow\frac{y}{4}=\frac{z}{5}\left(2\right)\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dung tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{144}{12}=12\)
\(\Rightarrow\begin{cases}\frac{x}{3}=12\Rightarrow x=36\\\frac{y}{4}=12\Rightarrow y=48\\\frac{z}{5}=12\Rightarrow z=60\end{cases}\)
Vậy \(\begin{cases}x=36\\y=48\\z=60\end{cases}\)
Ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\)
\(\frac{y}{z}=\frac{4}{5}\Rightarrow\frac{y}{4}=\frac{z}{5}\)
Từ hai điều trên.Ta suy ra được:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{144}{12}=12\)
vậy: x = 12 . 3 = 36
y = 12 . 4 = 48
z = 12 . 5 = 60
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x}< \frac{1}{2}\)
=> x > 2 (1)
Giả sử x < y \(\Rightarrow\frac{1}{x}>\frac{1}{y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x}>\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{2}{x}>\frac{1}{2}=\frac{2}{4}\)
=> x < 4 (2)
Từ (1) và (2) => x = 3
=> \(\frac{1}{y}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
=> y = 6
Vậy \(\left[\begin{array}{nghiempt}x=3;y=6\\x=6;y=3\end{array}\right.\)
\(\frac{abc}{1000}=\frac{1}{a+b+c}\)
\(\Leftrightarrow a+b+c=abc=1000\)
\(\Leftrightarrow abc=1000:4\)
\(\Leftrightarrow abc=125\)
Lương Nhất Chi
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\\ =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\\=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right) \\ =\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\)
Đừng giận nữa nha má !!!!
\(\frac{1}{2}x+\frac{3}{5}x=-\frac{2}{3}\)
\(=x\left(\frac{1}{2}+\frac{3}{5}\right)=-\frac{2}{3}\)
\(=x\cdot\frac{11}{10}=-\frac{2}{3}\)
\(\Rightarrow x=-\frac{2}{3}:\frac{11}{10}\)
\(\Rightarrow x=-\frac{20}{33}\)
x.(1/2+3/5)=-2/3
x.7/10=-2/3
x=-2/3:7/10
x=-20/20
Vậy x=-20/21