Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{2014.2016}\right)\)
\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{4060225}{2014.2016}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{2015.2015}{2014.2016}\)
\(=\frac{2.3.4....2015}{1.2.3....2014}.\frac{2.3.4....2015}{3.4.5....2016}\)
\(=\frac{2015}{1}.\frac{2}{2016}\)
\(=2015.\frac{1}{1008}=\frac{2015}{1008}\)
\(\Rightarrow\frac{2015}{1008}=\frac{x}{1008}\Rightarrow x=2015\)
Vậy \(x=2015\)
Ủng hộ mk nha !!! ^_^
Bài 1 :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)
\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)
\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)
\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)
Bài 2 :
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}\)
\(x=\frac{23}{11}\)
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+........+\frac{1}{99\cdot100}\right)-2x=\frac{1}{2}\)
\(\left(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{100-99}{99\cdot100}\right)-2x=\frac{1}{2}\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)
\(\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\)
\(\frac{99}{100}-2x=\frac{1}{2}\)
\(2x=\frac{99}{100}-\frac{1}{2}\)
\(2x=\frac{49}{100}\)
\(x=\frac{49}{100}:2\)
\(x=\frac{49}{200}\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)
\(\frac{99}{100}-2x=\frac{1}{2}\)
\(\frac{99-50}{100}=2x\)
\(49=200x\)
\(x=\frac{49}{200}\)
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\frac{100}{100}-\frac{1}{x+1}=\frac{99}{100}\)
\(\frac{1}{x+1}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=99\)
\(\frac{2}{2.3}\)+ \(\frac{2}{3.4}\)+ \(\frac{2}{4.5}\)+........+ \(\frac{2}{x+\left(x+1\right)}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+..........+ \(\frac{1}{x+\left(x+1\right)}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+.........+ \(\frac{1}{x}\)- \(\frac{1}{x+1}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\): 2
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\). \(\frac{1}{2}\)
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{502}{1005}\)
= \(\frac{1}{x+1}\)= \(\frac{1}{2}\)- \(\frac{502}{1005}\)
= \(\frac{1}{x+1}\)= \(\frac{1}{2010}\)
\(\Rightarrow\)\(x+1\)= 2010
\(\Leftrightarrow\) \(x\) = 2010 - 1
\(\Rightarrow\) \(x\)= 2009
Vậy \(x\)= 2009
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1004}{1005}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2010}\)
\(=>x+1=2010\)
\(=>x=2009\)
Vậy \(x=2009\)
\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{5}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{5}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2}{5}\)
\(\frac{1}{x+1}=\frac{1}{10}\)
\(\Rightarrow x+1=10\)
\(\text{Vậy x = 9}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2}{5}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{10}\)
\(\Rightarrow x+1=10\)
\(\Rightarrow x=10-1\)
\(\Rightarrow x=9\)
Vẫy = 9