K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{5}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{5}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2}{5}\)

\(\frac{1}{x+1}=\frac{1}{10}\)

\(\Rightarrow x+1=10\)

\(\text{Vậy x = 9}\)

11 tháng 8 2019

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2}{5}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{5}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2}{5}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{10}\)

\(\Rightarrow x+1=10\)

\(\Rightarrow x=10-1\)

\(\Rightarrow x=9\)

Vẫy = 9

24 tháng 7 2016

Ta có : 

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{4060225}{2014.2016}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{2015.2015}{2014.2016}\)

\(=\frac{2.3.4....2015}{1.2.3....2014}.\frac{2.3.4....2015}{3.4.5....2016}\)

\(=\frac{2015}{1}.\frac{2}{2016}\)

\(=2015.\frac{1}{1008}=\frac{2015}{1008}\)

\(\Rightarrow\frac{2015}{1008}=\frac{x}{1008}\Rightarrow x=2015\)

Vậy \(x=2015\)

Ủng hộ mk nha !!! ^_^

24 tháng 7 2016

ê cần giúp ko0

21 tháng 7 2017

Bài 1 : 

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)

\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)

\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)

\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)

\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)

\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)

Bài 2 : 

\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)

12 tháng 6 2018

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)

         \(\frac{11}{45}.x=\frac{23}{45}\)

                  \(x=\frac{23}{45}:\frac{11}{45}\)

                 \(x=\frac{23}{11}\)

12 tháng 6 2018

Gọi A=(1/1.2.3+ 1/2.3.4 +...+ 1/8.9.10) .x=23/45

    2A=3-1/1.2.3+ 4–2/2.3.4+ 5–4/3.4.5+ ... + 10–8/8.9.10

    2A=1/2 —1/2.3+ 1/2.3 — 1/3.4+ 1/3.4– 1/4.5 +...+1/8.9–1/9.10=1/2–1/9.10=44/90

     A=44/90 : 2=22/90

     x=23/45:A= 23/45 : 22/90=23/11= 2 1/1( hỗn số)

    

21 tháng 10 2018

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+........+\frac{1}{99\cdot100}\right)-2x=\frac{1}{2}\)

\(\left(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{100-99}{99\cdot100}\right)-2x=\frac{1}{2}\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\frac{99}{100}-2x=\frac{1}{2}\)

\(2x=\frac{99}{100}-\frac{1}{2}\)

\(2x=\frac{49}{100}\)

\(x=\frac{49}{100}:2\)

\(x=\frac{49}{200}\)

21 tháng 10 2018

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\frac{99}{100}-2x=\frac{1}{2}\)

\(\frac{99-50}{100}=2x\)

\(49=200x\)

\(x=\frac{49}{200}\)

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您

13 tháng 3 2016

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\frac{100}{100}-\frac{1}{x+1}=\frac{99}{100}\)

\(\frac{1}{x+1}=\frac{1}{100}\)

\(\Rightarrow x+1=100\)

\(x=99\)

13 tháng 3 2016

x=99 nha ban ! ai k minh se tk lai !

7 tháng 5 2017

\(\frac{2}{2.3}\)\(\frac{2}{3.4}\)\(\frac{2}{4.5}\)+........+ \(\frac{2}{x+\left(x+1\right)}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)\(\frac{1}{4.5}\)+..........+ \(\frac{1}{x+\left(x+1\right)}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{5}\)+.........+ \(\frac{1}{x}\)\(\frac{1}{x+1}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\): 2

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)\(\frac{1}{2}\)

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{502}{1005}\)

\(\frac{1}{x+1}\)\(\frac{1}{2}\)\(\frac{502}{1005}\)

\(\frac{1}{x+1}\)\(\frac{1}{2010}\)

\(\Rightarrow\)\(x+1\)= 2010

              \(\Leftrightarrow\) \(x\) = 2010 - 1

                   \(\Rightarrow\) \(x\)= 2009

                  Vậy \(x\)= 2009

7 tháng 5 2017

                                     \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)

                              \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1004}{1005}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)

                                                                                    \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)         

                                                                                             \(\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)       

                                                                                             \(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)            

                                                                                                         \(\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}\)          

                                                                                                          \(\frac{1}{x+1}=\frac{1}{2010}\)     

\(=>x+1=2010\)  

\(=>x=2009\)            

Vậy \(x=2009\)                    

28 tháng 1 2019

\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)

11 tháng 5 2020

ảnh đại diện đẹp thế lấy ở đâu