Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+...+3^{2006}\)
\(3B=3^2+3^3+3^4+...+3^{2007}\)
\(\Rightarrow3B-B=3^{2007}-3\)
\(\Rightarrow2B=3^{2007}-3\)
Vì \(2B+3=3^x\)\(\Rightarrow3^{2007}-3+3=3^x\)\(\Rightarrow3^{2007}=3^x\Rightarrow x=2007\)
Vậy \(x=2007\)
Ủng hộ mk nha!!!
a) Ta có : \(3A=3^{2007}+3^{2006}+...+3^3+3^2\)
A = \(3^{2006}+...+3^3+3^2+3\)
\(\Rightarrow2A=3^{2007}-3\)
\(\Rightarrow A=\frac{3^{2007}-3}{2}\)
b) Ta có \(2A=3^{2007}-3\)\(\Rightarrow2A+3=3^{2007}\)
Theo bài ta có: \(2A+3=3x\)
\(\Rightarrow3^{2007}=3x\)
\(\Rightarrow3.3^{2006}=3x\)
\(\Rightarrow x=3^{2006}\)
=>3a=32+33+...+32007
=>3a-a=2a=(32+33+34+...+32007)-(3+32+...+32006)
=>2a=32007-3
=>2a+3=32007-3+3
=>3x=32007
=>x=2007
3A=3^2+3^3+...+3^2007
=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)
=>2A=3^2007-3^1=3^2007-3
=>2A+3=3^2007-3+3=3^2007=3^x
=>x=2007
B=3+3^2+...+3^100.
3B=3.3+3^2.3+...+3^100.3
3B=3^2+3^3+...+3^101
3B-B=(3^2+3^3+...+3^101)-(3+3^2+...+3^100)
2B=3^101-3
Mà2B+3=3^n
Suy ra:3^101-3+3=3^n
3^n+3^101
Vậy n=101
Bài 1(b) làm tương tự,còn bài (a) thì bạn tự làm
Lời giải:
Đặt $A=3^2+3^3+3^4+...+3^{2006}$
$\Rightarrow 3A=3^3+3^4+3^5+...+3^{2007}$
$\Rightarrow 3A-A=3^{2007}-3^2$
$\Rightarrow 2A=3^{2007}-9$
Vậy: $(4-x)+\frac{3^{2007}-9}{2}=3^{2016}:243=3^{2016}:3^5=3^{2011}$
$2(4-x)+3^{2007}-9=2.3^{2011}$
$-2x-1=2.3^{2011}-3^{2007}=3^{2007}(2.3^4-1)=161.3^{2007}$
$\Rightarrow x=\frac{1-161.3^{2007}}{2}$
B = 3 + 32 + 33 + ... + 32006
2B + 3 = 3B - B + 3 = (32 + 33 + 34 + ... + 32007) - (3 + 32 + 33 + ... + 32006) + 3 = 32007 - 3 + 3 = 32007 = 3x => x = 2007
\(B=3+3^2+3^3+.....+3^{2006}\)
\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2007}\)
\(\Rightarrow2B=3^{2007}-3\)
\(\Rightarrow B=\frac{3^{2007}-3}{2}\)
\(2B+3=3^x\)
\(\Rightarrow2.\frac{3^{2007}-3}{2}+3=3^x\)
\(\Rightarrow3^{2007}-3+3=3^x\)
\(\Rightarrow3^{2007}=3^x\)
\(\Rightarrow x=2007\)