Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=3+3^2+3^3+......+3^{2006}\)
=> \(3A=3^2+3^3+......+3^{2007}\)
=> \(3A-A=3^{2007}-3\)
=> \(2A=3^{2007}-3\)
=> \(A=\frac{3^{2007}-3}{2}\)
b) Ta có : \(2A=3^{2007}-3\) (theo ý a)
=> \(2A+3=3^{2007}\)
=> x = 2007
\(A=3+3^2+3^3+.........+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+.........+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.......+3^{2007}\right)-\left(3+3^2+.....+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
\(\Leftrightarrow2A+3=3^{2007}\)
\(\Leftrightarrow3^x=3^{2007}\)
\(\Leftrightarrow x=2007\left(tm\right)\)
\(A=3+3^2+3^3+.......+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+......+3^{2007}\)
\(\Leftrightarrow3A-A=3^{2007}-3\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
\(\Leftrightarrow2A+3=2^{2007}\)
\(\Leftrightarrow2^{2007}=2^x\)
\(\Leftrightarrow x=2007\)
\(3A=3^2+3^3+....+3^{2007}\)
\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
b)\(2A+3=3^x\)
\(2A=3^x-3\)
Mà:\(2A=3^{2007}-3\)
\(\Rightarrow x=2007\)
1/ 3A-A=32007-3 <=> 2A=32007-3 => A=\(\frac{3^{2007}-3}{2}\)
2/ 2A=32007-3 => 2A+3=32007=3x => x=2007
3A = 32 + 33 + 34 + ... + 32007
3A - A = 32007 - 3
2A = 32007 - 3
A = ( 32007 - 3 ) : 2
ta có : 32007 - 3 + 3 = 3x
32007 = 3x
=> x = 2007
a)3A=3(31+32+33+...+32006)
3A=3.31+3.32+3.33+...+3.32006
3A=32+33+...+32007
3A-A=(32+33+...+32007)-(31+32+...+32006)
2A=32007-3
A=(32007-3):2
b)thay A vào ta được
32007-3+3=3x
32007=3x
=>x=2007
A = 31+32+33+.....+32006
3A = 32+33+34+....+32007
2A = 3A - A = 32007-3
=> A = \(\frac{3^{2007}-3}{2}\)
Vì 2A = 32007-3
=> 2A + 3 = 32007
Mà 2A + 3 = 3x
=> 3x = 32007
=> x = 2007
3A=\(3^2+3^3+3^4+...+3^{2007}\)
3A-A=2A=\(3^{2007}-3\)
A=\(\frac{3^{2007}-3}{2}\)
b.
2A+3=3^x
3^2007-3+3=3^x
3^2007=3^x
vay x=2007
ta có : 3A=32+33+...+32007
3A-A=32+33+34+....+32007-3-32-33-...-32006
2A=32007-3
A=\(\frac{3^{2007}-3}{2}\)
b,
2A+3=3x
<=>32007-3+3=3x
<=> 32007=32007
<=> x = 2007
vậy x =2007
x + 32=1+132+133+...+132006
=>3.(x+\(\frac{3}{2}\))=3.(1+\(\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2006}}\))
=>3(x+\(\frac{3}{2}\))=3+\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\)
=>3(x+\(\frac{3}{2}\))-(x+\(\frac{3}{2}\))=(3+\(1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\))-(1+132+133+...+132006)
=>2(x+\(\frac{3}{2}\))=3-\(\frac{1}{3^{2006}}\)
=>2(x+\(\frac{3}{2}\))=\(\frac{3^{2007}}{3^{2006}}\)-\(\frac{1}{3^{2006}}\)
=>2(x+\(\frac{3}{2}\))=\(\frac{3^{2007}-1}{3^{2006}}\)
=>x+\(\frac{3}{2}\)=\(\frac{3^{2007}-1}{3^{2006}}:2\)
=>x+\(\frac{3}{2}=\frac{3^{2007}-1}{3^{2006}.2}\)
=>x=\(\frac{3^{2007}-1}{3^{2006}.2}-\frac{3}{2}\)
\(B=3+3^2+...+3^{2006}\)
\(3B=3^2+3^3+3^4+...+3^{2007}\)
\(\Rightarrow3B-B=3^{2007}-3\)
\(\Rightarrow2B=3^{2007}-3\)
Vì \(2B+3=3^x\)\(\Rightarrow3^{2007}-3+3=3^x\)\(\Rightarrow3^{2007}=3^x\Rightarrow x=2007\)
Vậy \(x=2007\)
Ủng hộ mk nha!!!
a) \(A=3^1+3^2+...+3^{2006}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2007}\)
\(\Rightarrow3A-A=3^{2007}-3\)
\(\Rightarrow A=\frac{3^{2007}-3}{2}\)
b) \(2A+3=3^{2007}=3^x\Rightarrow x=2007\)
Bt lm câu đầu thoiiiii
a) A = \(3^1+3^2+3^3+...+3^{20}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+...+3^{20}+3^{21}\)
\(\Leftrightarrow3A-A=3^{21}-3\)
\(\Leftrightarrow2A=3^{21}-3\)
\(\Leftrightarrow A=\frac{3^{21}-3}{2}\)
Vậy \(A=\frac{3^{21}-3}{2}\)
b) Theo câu a ta có \(2A=3^{21}-3\)
\(\Leftrightarrow2A+3=3^{21}\) (1)
Theo bài ra ta có \(2A+3=3^x\) (2)
Từ (1) và (2) <=> \(3^x=3^{21}\)
<=> x = 21
Vậy x = 21
@@ Học tốt
Chiyuki Fujito
B = 3 + 32 + 33 + ... + 32006
2B + 3 = 3B - B + 3 = (32 + 33 + 34 + ... + 32007) - (3 + 32 + 33 + ... + 32006) + 3 = 32007 - 3 + 3 = 32007 = 3x => x = 2007
\(B=3+3^2+3^3+.....+3^{2006}\)
\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2007}\)
\(\Rightarrow2B=3^{2007}-3\)
\(\Rightarrow B=\frac{3^{2007}-3}{2}\)
\(2B+3=3^x\)
\(\Rightarrow2.\frac{3^{2007}-3}{2}+3=3^x\)
\(\Rightarrow3^{2007}-3+3=3^x\)
\(\Rightarrow3^{2007}=3^x\)
\(\Rightarrow x=2007\)