Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)
Vì \(x+3>x-2\)
nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)
c, \(\left(5-2x\right)\left(x+4\right)>0\)
TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)
TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )
bạn làm tương tự nhé
a, ta có tổng <0 nên 1 trong 2 số phải có 1 số âm , số còn lại là duong . Mà x-1<x+3 nên x-1 âm và x+3 dưong . Vậy x-1<0 nên x<1;x+3>0nen x>-3.vAY X<1 HOAC X>-3
bạn muốn mình làm cách bth hay lập bảng xét dấu các nhị thức
a: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
=>x-3/x-9<0
=>3<x<9
c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)
⇒ \(\dfrac{5}{x}\) - 1 < 0 ⇒ \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)
Lập bảng ta có:
\(x\) | 0 5 |
\(x-5\) | + | + 0 - |
\(x\) | - 0 + | + |
\(\dfrac{x-5}{x}\) | - || + 0 - |
Theo bảng trên ta có \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)
Vậy tập hợp nghiệm của bất phương trình đã cho là:
S = (- ∞; 0) \(\cup\) (5 ; + ∞)
a) Nhận xét: \(x-1< x+4\)
=> \(\hept{\begin{cases}x-1< 0\\x+4>0\end{cases}}\Rightarrow-4< x< 1\)
b) Nếu: \(\hept{\begin{cases}x>0\\4-x>0\end{cases}}\Rightarrow0< x< 4\)
Nếu: \(\hept{\begin{cases}x< 0\\4-x< 0\end{cases}}\Rightarrow∄x\)
c) Nếu: \(\hept{\begin{cases}1-3x>0\\8+x< 0\end{cases}}\Rightarrow x< -8\)
Nếu: \(\hept{\begin{cases}1-3x< 0\\8+x>0\end{cases}\Rightarrow}x>\frac{1}{3}\)
d) Nếu: \(\hept{\begin{cases}2x+6>0\\4-x>0\end{cases}}\Rightarrow-3< x< 4\)
Nếu: \(\hept{\begin{cases}2x+6< 0\\4-x< 0\end{cases}}\Rightarrow∄x\)
a) \(\left|x\right|+\left|x+2\right|=0\)
Mà \(\left|x\right|\ge0\forall x;\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\)
Dấu '' = '' xảy ra khi \(\Rightarrow\hept{\begin{cases}x=0\\x+2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x=-2\end{cases}}\)
b) \(\left|x\right|=5,6\)
\(\Rightarrow x\in\left\{\pm5,6\right\}\)
Mà \(x< 0\Rightarrow x=-5,6\)
c) \(\left|x-3\right|+\left|4-x\right|=0\)
Mà: \(\hept{\begin{cases}\left|x-3\right|\ge0\forall x\\\left|x-4\right|\ge0\forall x\end{cases}}\)
Dấu '' = '' xảy ra khi \(\Rightarrow\hept{\begin{cases}x-3=0\\x-4=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\x=4\end{cases}}\)
Mà x không thể nhận hai giá trị cùng một lúc \(\Rightarrow x\in\varnothing\)
d)
\(\left|-x\right|=\frac{3}{4}\)
Mà \(\left|-x\right|=\left|x\right|\Rightarrow\left|x\right|=\frac{3}{4}\)
\(\Rightarrow x\in\left\{\pm\frac{3}{4}\right\}\)mà \(x< 0\Rightarrow x=\frac{-3}{4}\)