Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x.\left(a^2+4\right)=3\left(a^4-16\right)\)
Vì \(a^2+4>0\)chia cả 2 vế cho \(a^2+4\)ta được:
\(x=\frac{3.\left(a^2+4\right)\left(a^2-4\right)}{a^2+4}\Leftrightarrow x=3.\left(a^2-4\right)\)
- \(\Leftrightarrow\left(a^2+4\right)x=3a^2-48\Leftrightarrow x=\frac{3a^2-48}{a^2+4}\)
- \(\Leftrightarrow\left(a^2+5\right)x=a^2\Leftrightarrow x=\frac{a^2}{a^2+5}\)
x4+4x3-4x2-48x-48=0
=> x4+4(x3-x2) - 48x = 48
=> x4 + 4[x2(x-1)] - 48x = 48
\(x^4+4x^3-4x^2-48x-48=0\)
\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)
\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)
Ta có: \(x^2+6x+12=\left(x+3\right)^2+3>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)
Vậy...
A= (4x2 + y2).[(2x)2 - y2] = (4x2 +y2)(4x2 - y2) = (4x2)2 _ (y2)2 = 16x4 - y4
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
\(=(4x^2+16x-20x-80+32):(x+4)\\ =[4x(x+4)-20(x+4)+32]:(x+4)\\ =4x-20(\text{dư }32)\)
a) Ta có: \(\dfrac{P}{x+2}=\dfrac{x^2+5x+6}{x^2+4x+4}\)
\(\Leftrightarrow\dfrac{P}{x+2}=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\dfrac{x+3}{x+2}\)
hay P=x+3
a. y4 - 14y2 + 49
Gọi y2 là t, ta có:
t2 - 14t + 49
<=> t2 - 14t + 72
<=> (t - 7)2
Thay x2 = t
<=> (x2 - 7)2
b. \(\dfrac{1}{4}-x^2\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^2-x^2\)
\(\Leftrightarrow\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
c. x4 - 16
<=> (x2)2 - 42
<=> (x2 - 4)(x2 + 4)
d. x2 - 9
<=> x2 - 32
<=> (x - 3)(x + 3)