Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(3^{x+1}=9^x=3^{2x}\Rightarrow x+1=2x\Leftrightarrow x=1\)
b/ \(2^{3x+2}=4^{x+5}=2^{2x+10}\Rightarrow3x+2=2x+10\Leftrightarrow x=8\)
c/ \(3^{2x-1}=243=3^5\Rightarrow2x-1=5\Leftrightarrow x=3\)
\(a\)\(,\)\(\left(2x-3\right)^2\)\(=\)\(4^2\)(1)
mà ta có \(4^2\)=\(\left(-4\right)^2\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\left(2x-3\right)^2\)=\(4^2\)=\(\left(-4\right)^2\)
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)(thỏa mãn \(x\)\(\in\)\(Q\))
Vậy \(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)
\(b,\)\(\left(3x-2\right)^5\)\(=\)\(-243\)
\(\Rightarrow\)\(\left(3x-2\right)^5\)\(=\)\(\left(-3\right)^5\)
\(\Rightarrow\)\(3x-2=-3\)
\(\Rightarrow\)\(3x=-1\)
\(\Rightarrow\)\(x=\frac{-1}{3}\)(thỏa mãn \(x\in Q\))
Vậy \(x=\frac{-1}{3}\)
\(c,\)\(\left(7x+2\right)^{-1}=3^{-2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{3^2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{9}\)
\(\Rightarrow\)\(7x+2=9\)
\(\Rightarrow\)\(7x=7\)
\(\Rightarrow x=1\)(thỏa mãn \(x\in Q\))
Vậy \(x=1\)
A,\(\left(2x-3\right)^2=4^2\)
\(2x-3=4\)
\(2x=7\)
\(x=3,5\)
Tương tự
bài 1 :
b) (x-1/2 )2 = 0
<=> x - 1/2 = 0
<=> x = 0+ 1/2
<=> x = 1/2
c) ( x - 2 ) 2 = 1
<=> x -2 = 1
<=> x = 1 +2 = 3
d) ( 2x -1 )3 = -8
<=> ( 2x - 1) 3 = ( -2 ) 3
<=> 2x - 1 = -2
<=> 2x = -2+1 = -1
<=> x = -1/2
Bài 2 :
c) 32x-1=243
<=> 32x-1= 35
<=> 2x-1 = 5
<=> 2x = 6
<=> x = 6:2 = 3
Mk chỉ giải đc như vậy thôi
bạn thông cảm nhé !
a: =>x=(-2/3)^5:(-2/3)^2=(-2/3)^3=-8/27
b: =>x*(-1/3)^3=(-1/3)^4
=>x=-1/3
d: =>3x-2=-3
=>3x=-1
=>x=-1/3
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
a) \(2^{3x+2}=4^{x+5}\)
\(2^{3x+2}=2^{2x+10}\)
\(\Rightarrow3x+2=2x+10\)
\(3x-2x=10-2\)
\(x=8\)
Vậy x = 8
b) \(3^{2x-1}=243\)
\(3^{2x-1}=3^5\)
\(\Rightarrow2x-1=5\)
\(2x=5+1\)
\(2x=6\)
\(x=6\div2\)
\(x=3\)
Vậy x = 3
=))