Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Rút gọn Biểu thức:
A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)
= 0 \(:\dfrac{2x}{x2+2x}\)
b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
Thay tất cả x= -4
=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)
= -16 : \(\dfrac{1}{3}\)
= -18
a) Ta có : x - 2y = 0
=> x = 2y
Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5
= 8y2 - 2y2 - 6y2 - 4y3 + 4y3 + 5
= 5
Vậy giá trị của A khi x - 2y = 0 là 5
b)Thay 11 = x - y vào biểu thức B ta có
\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)
Vậy giá trị của B khi x - y = 11 là 0
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
\(x^3+x=0\)
\(\Rightarrow x.\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\end{cases}}\)
\(x^2-2x-3=0\)
\(\Rightarrow x.\left(x-2\right)=3\)
Vì \(x>x-2\)và \(x\inƯ\left(3\right)=\left\{3;-3\right\}\)
Các phần sau tương tự
\(x^3+x=0\)
\(\Leftrightarrow\)\(x\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
\(x^2-2x-3=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy...
\(2x^2+5x-3=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)
Vậy...
\(x+5x^2=0\)
\(\Leftrightarrow\)\(x\left(5x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\5x+1=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)
Vậy...
ĐK : 2x - 1 \(\ge0\)=> \(x\ge\frac{1}{2}\)
Khi đó |2x - 1| = 2x - 1
<=> \(\orbr{\begin{cases}2x-1=2x-1\\2x-1=-2x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x=0\\4x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}\forall x\\x=\frac{1}{2}\end{cases}}\Leftrightarrow\forall x\)
Kết hợp điều kiện => \(x\ge\frac{1}{2}\)là giá trị phải tìm
Vậy \(x\ge\frac{1}{2}\)là nghiệm phương trình
=> Chọn B
\(\dfrac{2x^2+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\)
\(=\dfrac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{x\left(x+2\right)}-\dfrac{2}{x-2}\)\(=\dfrac{2x^2+4x+\left(x^2-4\right)\left(x-2\right)-2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x^3+8\right)-\left(2x^2+4x\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)\left(x^2-2x+4-2x\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)\left(x^2-4x+4\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x-2}{x}.\)
ĐKXĐ : \(x\ne\pm1\)
a) Ta có :
\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)
Vậy : \(P=\frac{x^2}{x-1}\)
b) Ta có : \(x^2+2x-3=0\)
\(\Leftrightarrow x^2+3x-x-3=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow x=-3\) ( Do \(x=1\) không thỏa mãn ĐKXĐ )
Thay \(x=-3\) vào P ta có :
\(P=\frac{\left(-3\right)^2}{-3-1}=\frac{9}{-4}=-\frac{9}{4}\)
Vậy : \(P=-\frac{9}{4}\) với x thỏa mãn đề
c) Phải là : \(x>1\) nhé bạn :
Ta có :
\(P=\frac{x^2}{x-1}=\frac{x^2-1+1}{\left(x-1\right)}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)
\(=\left(x-1+\frac{1}{x-1}\right)+2\)
Ta có : \(x>1\Rightarrow x-1>0,\frac{1}{x-1}>0\)
Áp dụng BĐT AM-GM cho 2 số dương ta có :
\(x-1+\frac{1}{x-1}\ge2\)
Do đó : \(P\ge2+2=4\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x=2\) ( Do \(x>1\) )
Vậy : GTNN của P là 4 tại \(x=2\)
a)
\(\dfrac{x-3}{5}+\dfrac{1-2x}{3}=6\\ < =>3x-9+5-10x=90\)
\(< =>3x-10x=90+9-5\\ < =>-7x=94\\ < =>x=-\dfrac{94}{7}\)
b)
\(\left(2x-3\right)\left(x^2+1\right)=0\\ < =>\left[{}\begin{matrix}2x-3=0\\x^2+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x^2=-1\left(voli\right)\end{matrix}\right.\\ < =>x=\dfrac{3}{2}\)
c)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\left(x\ne-1;x\ne2\right)\)
suy ra: \(2\left(x-2\right)-x-1=3x-11\)
\(< =>2x-4-x-1-3x+11=0\)
\(< =>2x-x-3x=4+1-11\\ < =>-2x=-6\\ < =>x=3\left(tm\right)\)
a) \(\dfrac{x-3}{5}+\dfrac{1-2x}{3}=6\)
\(\Leftrightarrow3\left(x-3\right)+5\left(1-2x\right)=90\)
\(\Leftrightarrow-4-7x=90\)
\(\Leftrightarrow x=-\dfrac{94}{7}\)
b) \(\left(2x-3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow2x-3=0\) (Vì \(x^2+1>0\))
\(\Leftrightarrow x=\dfrac{3}{2}\)
c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\left(Đk:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow x-5=3x-11\)
\(\Leftrightarrow x=3\)
Ta có:
\(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}.\dfrac{1-3x}{x\left(x+3\right)}=-\dfrac{2}{x^2}\)
\(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\\ =\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}.\dfrac{-\left(3x-1\right)}{x\left(x+3\right)}\\ =\dfrac{-2}{x^2}\)
\(2x^2+2x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}=0\)
hay \(x=-\dfrac{1}{2}\)