Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
\(\left(2x-4\right)^4=81\)
\(\left(2x-4\right)^4=3^4\)
\(\Rightarrow2x-4=3\)
\(\Rightarrow2x=7\)
\(\Rightarrow x=\frac{7}{2}\)
vay \(x=\frac{7}{2}\)
\(\left(x-1\right)^5=-32\)
\(\left(x-1\right)^5=\left(-2\right)^5\)
\(\Rightarrow x-1=-2\)
\(\Rightarrow x=-1\)
vay \(x=-1\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\left(2x-1\right)^6\left(1-2x+1\right)\left(1+2x-1\right)=0\)
\(\left(2x-1\right)^6\left(-2x+2\right)\left(2x\right)=0\)
\(\Rightarrow\left(2x-1\right)^6=0\)hoac \(\Rightarrow\orbr{\begin{cases}-2x+2=0\\2x=0\end{cases}}\)
\(\Rightarrow2x-1=0\) hoac \(\Rightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
\(\Rightarrow x=\frac{1}{2}\)hoac \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Ta có : \(\frac{2x-1}{x+1}=\frac{2017}{2018}\)
=> 2018(2x - 1) = 2017(x + 1)
=> 4036x - 2018 = 2017x + 2017
=> 4036x - 2017x = 2017 + 2018
=> 2019x = 4035
=> x = \(\frac{4035}{2019}\)
\(a,\frac{2x-1}{x+1}=\frac{2017}{2018}\)
\(\Leftrightarrow2018.\left(2x-1\right)=2017.\left(x+1\right)\)
\(\Leftrightarrow4036x-2018=2017x+2017\) \(\Leftrightarrow4036x-2017x=2018+2017\)
\(\Leftrightarrow2019x=4035\Leftrightarrow x=\frac{4035}{2019}\)
\(b,\frac{x+2}{2x-5}=\frac{-x+3}{6-2x}\)( Điều kiện : \(x\ne3;x\ne2,5\))
\(\Leftrightarrow\left(x+2\right).\left(-2x+6\right)=\left(-x+3\right).\left(2x-5\right)\)
\(\Leftrightarrow-2x^2+6x-4x+12=-2x^2+5x+6x-15\)
\(\Leftrightarrow-2x^2+6x-4x+2x^2-5x-6x=-15-12\)
\(\Leftrightarrow-9x=-27\Leftrightarrow x=3\)( không thỏa mãn điều kiện )
\(\Rightarrow\)phương trình vô nghiệm .
\(\Rightarrow x\in\Phi\)
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!
0=(2x+1)2
4x2 + 4x + 1 = 0
4x2 = 0 hay 4x + 1 = 0
x = 2 hay x= \(-\dfrac{1}{4}\)
(2x+1)44=(2x+1)6
=> (2x+1)^4 - (2x+1)^6 = 0
=> (2x+1)^4 * [1 - (2x+1)^2] = 0
=> \(\left[{}\begin{matrix}\left(2x+1\right)^4=0\\\left[1-\left(2x+1\right)^2\right]=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}2x+1=0\\\left(2x+1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\\left[{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x=0\\2x=-2\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\\x=-1\end{matrix}\right.\)Vậy x\(\in\){0;-1;\(\dfrac{1}{2}\)}