K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

\(\left(2x^2-3\right)^2=\left(x-2\right)^3-x\left(3+x^2-10x\right)\)

\(\Leftrightarrow4x^4-12x^2+9=x^3-6x^2+12x-8-3x-x^3+10x^2\)

\(\Leftrightarrow4x^4-12x^2+9=4x^2+9x-8\)

\(\Leftrightarrow4x^4-12x^2+9-4x^2-9x+8=0\)

\(\Leftrightarrow4x^4-16x^2-9x+17=0\)

Giải nghiệm ta được \(S=\left\{\frac{2258}{2671};2,02\right\}\)

27 tháng 12 2019

Ờm... (2x2 - 3)?

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

26 tháng 10 2021

\(e,\Leftrightarrow x^2-10x+21-x^2=1\\ \Leftrightarrow-10x=-20\Leftrightarrow x=2\\ f,\Leftrightarrow x^2+4x+4-x^2+3x-2=0\\ \Leftrightarrow7x=-2\Leftrightarrow x=-\dfrac{2}{7}\\ g,=x^2-2x+1-x^2+4=-2x+5\\ h,\Leftrightarrow10x^2+9x-10x^2-13x+3=8\\ \Leftrightarrow-4x=5\Leftrightarrow x=-\dfrac{5}{4}\)

26 tháng 10 2021

e) \(\left(x-3\right)\left(x-7\right)-x^2=1\\ \Rightarrow x^2-10x+21-x^2=1\\ \Rightarrow-10x=-20\\ \Rightarrow x=2\)

f) \(\left(x+2\right)^2-\left(x-2\right)\left(x-1\right)=0\\ \Rightarrow x^2+4x+4-x^2+3x-2=0\\ \Rightarrow7x=-2\\ \Rightarrow x=-\dfrac{2}{7}\)

g) \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=0\\ \Rightarrow x^2-2x+1-x^2+4=0\\ \Rightarrow-2x=-5\\ \Rightarrow x=\dfrac{5}{2}\)

h) \(\left(10x+9\right).x-\left(5x-1\right)\left(2x+3\right)=8\\ \Rightarrow10x^2+9x-10x^2-13x+3=8\\ \Rightarrow-4x=5\\ \Rightarrow x=-\dfrac{5}{4}\)

14 tháng 6 2023

`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`

`<=> 4 + 3 + (-5x) + (-2)=0`

`<=> -5x+5=0`

`<=>-5x=-5`

`<=>x=1`

`2,(25x^2-10x):5x +3(x-2)=4`

`<=> 5x - 2 + 3x-6=4`

`<=> 8x -8=4`

`<=> 8x=12`

`<=>x=12/8`

`<=>x=3/2`

`3,(3x+1)^2-(2x+1/2)^2=0`

`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`

`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`

`<=>( x+1/2) (5x+3/2)=0`

`@ TH1`

`x+1/2=0`

`<=>x=0-1/2`

`<=>x=-1/2`

` @TH2`

`5x+3/2=0`

`<=> 5x=-3/2`

`<=>x=-3/2 : 5`

`<=>x=-15/2`

`4, x^2+8x+16=0`

`<=>(x+4)^2=0`

`<=>x+4=0`

`<=>x=-4`

`5, 25-10x+x^2=0`

`<=> (5-x)^2=0`

`<=>5-x=0`

`<=>x=5`

14 tháng 6 2023

\(x^2+8x+16=x^2+2.x.4+4^2=\left(x+4\right)^2\)

\(25-10x+x^2=5^2-2.5.x+x^2=\left(5-x\right)^2\)

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

7 tháng 8 2021

bạn ơi có câu c không bạn

 

10 tháng 12 2018

a)\(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)

\(\Rightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2=x^2+6x+64\)

\(\Rightarrow\left(2x+3-2x+5\right)^2=x^2+6x+64\)

\(\Rightarrow8^2=x^2+6x+64\)

\(\Rightarrow64=x^2+6x+64\)

\(\Rightarrow x^2+6x=0\)

\(\Rightarrow x\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

b) \(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=3\)

\(\Rightarrow\left(x^4+5x^2-5x^2-25+2x^3+10x\right):\left(x^2+5\right)=3\)

\(\Rightarrow\left[x^2\left(x^2+5\right)-5\left(x^2+5\right)+2x\left(x^2+5\right)\right]:\left(x^2+5\right)=3\)

\(\Rightarrow\left(x^2+5\right)\left(x^2-5+2x\right):\left(x^2+5\right)=3\)

\(\Rightarrow x^2+2x-5=3\)

\(\Rightarrow x^2+2x-5-3=0\)

\(\Rightarrow x^2+2x-8=0\)

\(\Rightarrow x^2+4x-2x-8=0\)

\(\Rightarrow x\left(x+4\right)-2\left(x+4\right)=0\)

\(\Rightarrow\left(x+4\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)

10 tháng 12 2018

Bạn ơi ! mik hỏi phép này làm thế nào hả bạn ?

( x4 + 5x2 - 5x2 -25 + 2x3 + 10x ) :( x2 + 5 )

27 tháng 8 2021

`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`

27 tháng 8 2021


`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`

NV
26 tháng 7 2021

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow x\left(x-2\right)=0\) (do \(x^2+10>0;\forall x\))

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

26 tháng 7 2021

`x^4-2x^3+10x^2-20x=0`

`<=>x^3(x-2)+10x(x-2)=0`

`<=>(x^3+10x)(x-2)=0`

`<=>x(x^2+10)(x-2)=0`

`<=>`$\left[\begin{matrix} x=0\\ x^2+10=0\\x-2=0\end{matrix}\right.$

`<=>`$\left[\begin{matrix} x=0\\ x^2=-10 \ \rm(loại) \\x=2\end{matrix}\right.$

Vậy `S={0;2}`

c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x=0\)

\(\Leftrightarrow x\left(3x+26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)

23 tháng 9 2021

\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)

\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)