Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(4y^2\le196\)
\(\Rightarrow y^2\le49\)
\(\Rightarrow y\in\left\{\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7\right\}\)
Đến đây bạn thay vào rồi tìm nốt x nhé
Ta có:
22+42+62+...+202
= 2.12+2.22+...+2.102
=2.(12+...+102)=2.385=770
Ta có:
12+3.12+3.22+3.32+...+3.102
=12+3.(12+22+...+102)
=1+3.385=1156
+ A ( x ) = ax2 + bx + c
=> A(0) = a . 02 + b.0 + c = c mà A(0) = 4 => c = 4
+ A ( x ) = ax2 + bx + c
=> A ( 1 ) = a . 12 + b.1 + c = a + b + c hay A ( 1 ) = a + b + 4 mà A(1) = 9 => a + b = 5
+ A ( x ) = ax2 + bx + c
=> A ( 2 ) = a . 22 + b . 2 + c = 4a + 2b + c hay A ( 2 ) = 4a + 2b + 4 mà A ( 2 ) = 14 => 4a + 2b = 10
4a + 2b = 2a + 2a + 2b = 2a + 10 mà 4a + 2b = 10 => 2a + 10 = 14 => a = 2 => b = 5 - 2 = 3
ta thấy 8=2^3, 64=4^3, 256=6^3
=>x/2=y/4=z/6 (2)
từ đó đặt k =(2) rồi thay vào x^2+x^2+2^2=14
sau đó bạn tự giải nha
Ta có:\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
Vì 3 là số lẻ \(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\left(\frac{x}{2}\right)^2=\left(\frac{y}{4}\right)^2=\left(\frac{z}{6}\right)^2=\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=\frac{1}{4}.4=1\)\(\Rightarrow x=\pm1\)
\(y^2=\frac{1}{4}.16=4\)\(\Rightarrow y=\pm2\)
\(z^2=\frac{1}{4}.36=9\)\(\Rightarrow z=\pm3\)
Từ (1) \(\Rightarrow\)x, y, z phải cùng dấu âm hoặc cùng dấu dương
Vậy các cặp giá trị \(\left(x;y;z\right)\)thoả mãn là: \(\left(-1;-2;-3\right)\)hoặc \(\left(1;2;3\right)\)
(14x+1)2=196
(14x+1)2=142
14x+1=14
\(\Rightarrow\)x+1=1
x=1-1
x=0
Vậy x=0.
\(\left(14^{x+1}\right)^2=196\)
\(\Rightarrow\left(14^{x+1}\right)^2=\hept{\begin{cases}14^2\\\left(-14\right)^2\end{cases}}\)
\(\Rightarrow14^{x+1}=\hept{\begin{cases}14\\-14\end{cases}}\)
\(Với:14^{x+1}=14\) \(Với:14^{x+1}=-14\)
\(\Rightarrow x+1=1\) \(\Rightarrow x+1=-1\)
\(\Rightarrow x=1-1\) \(\Rightarrow x=-1-1\)
\(\Rightarrow x=0\) \(\Rightarrow x=-2\)
Vậy x\(\in\left\{0;-2\right\}\)