Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có công thức như sau :
\(a^{-x}=?\)
lời giải công thức này như sau :
\(a^{-x}=\left(\frac{1}{a}\right)^x\)
vậy bài cũng gải tương tự
\(32^{-x}.16^x=\left(\frac{1}{32}\right)^x.\left(16^x\right)\)
\(=\left(\frac{16}{32}\right)^x=\left(\frac{1}{2}\right)^x=2^{-x}\)
mà \(2048=2^{11}\)
\(\Rightarrow-x=11\)
\(\Leftrightarrow x=-11\)
vậy \(x=-11\)
\(\Rightarrow\)\(\left(\frac{1}{32}\right)^x\cdot16^x=2048\)
\(\Rightarrow\)\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-11}\)
\(\Rightarrow\)\(x=-11\)
\(A=1+3+3^2+3^3+...+3^{101}\)
\(3A=3+3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A=\left(3^{101}-1\right):2\)
Thu gọn tổng sau:
A=1+3+32+33+...+3100
B= 2100-299-298-297-...-22-2
C= 3100-399+398-397-...+32-3+1
\(\frac{2030-x}{15}+\frac{2041-x}{13}+\frac{2048-x}{11}+\frac{1961-x}{9}=0\)
\(\Leftrightarrow\frac{2030-x}{15}-1+\frac{2041-x}{13}-2+\frac{2048-x}{11}-3+\frac{1961-x}{9}+6=0\)
\(\Leftrightarrow\frac{2015-x}{15}+\frac{2015-x}{13}+\frac{2015-x}{11}+\frac{2015-x}{9}=0\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Mà \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow2015-x=0\Leftrightarrow x=2015\)
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
Thấy: `2 xx 2048 = 4096 = 2^12 = 2^6 xx 2^6 = 64 xx 64`.
`-> x = 64 (64^64 = 2^2048)`.
1