Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a) cho f(x) = 0
\(=>\left(x+2\right)\left(-x+1\right)=0\)
\(=>\left[{}\begin{matrix}x+2=0\\-x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
b) 2(x-3)-3(x+1)=5
\(\Leftrightarrow2x-6-3x-3=5\)
\(\Leftrightarrow-x-9=5\)
\(\Leftrightarrow-x=14\Leftrightarrow x=14\)
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
Ta có : \(\dfrac{\left(x-3\right)\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x-4\right)}>0\)
- Đặt \(f\left(x\right)=\dfrac{\left(x-3\right)\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x-4\right)}\)
- Lập bảng xét dấu :
- Từ bảng xét dấu : - Để f(x) > 0
\(\Leftrightarrow\left[{}\begin{matrix}-3< x< -2\\-1< x< 3\\x>4\end{matrix}\right.\)
Vậy ...
Lời giải:
a. $x=|x+1|+|x+2|+|x+3|\geq 0$
$\Rightarrow x+1>0; x+2>0; x+3>0$
$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Do đó:
$(x+1)+(x+2)+(x+3)=x$
$3x+6=x$
$2x+6=0$
$x=-3< 0$ (vô lý)
Vậy pt vô nghiệm.
b.
$|2x+1|\geq 0$
$|x-y+1|\geq 0$
Do đó để tổng của chúng bằng $0$ thì:
$2x+1=x-y+1=0$
$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$
c.
$|x-3|=x-3$
$\Leftrightarrow x\geq 3$
c: Ta có: \(\left|x-3\right|+3=x\)
\(\Leftrightarrow\left|x-3\right|=x-3\)
\(\Leftrightarrow x-3\ge0\)
hay \(x\ge3\)
\(\left|x\right|+x=\frac{1}{3}\)
\(\Rightarrow\left|x\right|=\frac{1}{3}-x\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}-x\\x=\frac{-1}{3}+x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0=\frac{-1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=\varnothing\left(ktm\right)\end{cases}}\)
Vậy \(x=\frac{1}{6}\)