Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{10}+\frac{x+2}{13}+\frac{x+2}{16}+\frac{x+2}{19}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{10}+\frac{1}{13}+\frac{1}{16}+\frac{1}{19}\right)=0\)
Mà \(\frac{1}{10}+\frac{1}{13}+\frac{1}{16}+\frac{1}{19}\ne0\)
\(\Rightarrow x+2=0\Rightarrow x=-2\)
Vậy \(x=-2\)
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
a: Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b: Ta có: \(x^2-5x-6=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
\(3x\cdot\left(x+5\right)-2x-10=0\)
\(3x^2+15x-2x-10=0\)
\(3x^2-2x+5=0\)
\(3x^2-3x-5x+5=0\)
\(3x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(3x-5\right)=0\)
- x -1 = 0 => x = 1
- 3x - 5 = 0 => 3x = 5 => x = \(\frac{5}{3}\)
Dễ mà :vv
Ta có: \(x^2+4y^2-6x+4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
Đến đây tự giải...
<=> x^2-6x+9+4y^2+4y+1=0
<=> x^2-2.3.x+3^2+(2y)^2+2.2y.1+1=0
<=>(x-3)^2+(2y+1)^2=0
<=> x-3=0 và 2y+1=0
<=> x=3 và y=-1/2
x2 - 7x + 10 = 0
x2 - 7x = 0+ 10
x2 - 7x = 10
x ( x - 7 ) = 10
Tick nha
x10 + x5 +1 =0
x10 + x5 +1 +x2+x-x2-x = 0
x.(x9 -1 ) + x2 . ( x3-1) + ( x2 +x +1)=0
x( x3-1)(x3+1) + x2 . ( x3-1) + ( x2 +x +1)=0
(x-1)(x2+x+1)\([x\left(x^3+1\right)+x^2]\)+ ( x2 +x +1)=0
( x2 +x +1) . \([\left(x-1\right).\left(x^4+x+x^2\right)+1]\) =0
( x2 +x +1) \(\left(x^5+x^2+x^3-x^4-x-x^2\right)=0\)
( x2 +x +1) ( x5 -x4 + x3 ) =0
( x2 +x +1) x3 ( x2 - x +1 ) = 0
Answer:
\(x\left(x-10\right)+x-10=0\)
\(\Rightarrow x\left(x-10\right)+\left(x-10\right)=0\)
\(\Rightarrow\left(x-10\right).\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=10\\x=-1\end{cases}}\)