Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow3\left(3x+1\right).2\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=4\end{matrix}\right.\)
d: Ta có: \(9x^2+6x-8=0\)
\(\Leftrightarrow9x^2+12x-6x-8=0\)
\(\Leftrightarrow\left(3x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
e: Ta có: \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
f: Ta có: \(5x\left(x-3\right)-x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
a ) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
b ) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3.x^2.3+3.x.3^2+3^3=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow\left(x-3\right)=0\)
\(\Leftrightarrow x=3\)
a) x3 - 6x2 + 12x - 8 = 0
( x - 2 ) 3 = 0
x - 2 = 0
x = 2
b) x3 + 9x2 + 27x + 27 = 0
( x + 3 )3 = 0
x + 3 = 0
x = -3
9x2 +6x-8=0
<=> 9x2 +6x+1-9=0
<=> (3x+1)^2 - 3^2 = 0
<=> (3x+1-3)(3x+1+3)=0
<=> (3x-2)(3x+4)=0
=> TH1: 3x-2=0 <=> x=2/3
TH2: 3x+4=0 <=> x= -4/3
vậy ....................
\(9x^2+6x-8=0\)
\(9x^2+6x+1-9=0\)
\(\left(3x+1\right)^2-3^2=0\)
\(\left(3x+1-3\right)\left(3x+1+3\right)=0\)
\(\left(3x-2\right)\left(3x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=2\\3x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-4}{3}\end{cases}}\)
vay \(\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-4}{3}\end{cases}}\)
a. 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) = 0
<=> 3(6x2-5x+1)-(18x2-29x+3)=0
<=> 14x=0
<=> x=0
b. (x - 3)(x - 5) + 3 (x - 1) = (x - 1)(x - 3)
<=> (x-3)(x-5-x+1)+3(x-1)=0
<=> -4(x-3)+3(x-1)=0
<=> -x+9=0
<=> x=9
c. (x - 1)(x - 2) - (x + 2)(x + 1) = 8
<=> x2-3x+2-(x2+3x+2)=8
<=> -6x=8
<=> \(x=\frac{-4}{3}\)
Ta có: \(x^3+6x^2+9x=0\)
\(\Leftrightarrow x\left(x+3\right)^2=0\)
hay \(x\in\left\{0;-3\right\}\)
\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\left(x-4\right)\left(x^2-9\right)=0\)\(\)
\(\Rightarrow x-4=0\) hay \(x^2-9=0\)
\(\Rightarrow x=4\) hay \(x^2=9=3^2\)
\(\Rightarrow x=4\) hay \(x=\pm3\)
⇔x2(x-4) -9(x-4) = 0
⇔(x-4).(x-3).(x+3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
\(x^3-9x-8=0\)
\(\Rightarrow xxx-9x-8=0\)
\(\Rightarrow\left(xx-9\right)x-8=0\)
\(\Rightarrow\left(x^2-9\right)x=0+8=8\)
\(\Rightarrow x=-1\)
x3 - 9x - 8 = 0
=> x3 - x - 8x - 8 = 0
=> x(x2 - 1) - 8(x + 1) = 0
=> x(x - 1)(x + 1) - 8(x + 1) = 0
=> (x + 1)[x(x - 1) - 8) = 0
=> x + 1 = 0 hoặc x(x - 1) - 8 = 0
=> x = -1 hoặc x(x - 1) = 8