Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^3-13x=0\)
\(x.\left(x^2-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{13}\end{cases}}}\)
\(b,2-25x^2=0\)
\(\Rightarrow25x^2=2\Rightarrow x^2=\frac{2}{25}\Rightarrow x=\sqrt{\frac{2}{25}}\)
\(c,x^2-x+\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
a, x 3 - 13 x = 0
=> x ( x 2 - 13 ) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow[\begin{cases}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{cases}}\)
b, 2 - 25 x 2 = 0
=> 25 x 2 = 2
=> x 2 = 0,08
=> \(\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)
x, x 2 - x + \(\frac{1}{4}\)= 0
=> \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=\frac{1}{2}\)
a ) \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-1=0\\x-2000=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=2000\end{array}\right.\)
b ) \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2-13=0\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{13}\\x=-\sqrt{13}\end{array}\right.\end{array}\right.\)
Bài giải:
a) 5x(x -2000) - x + 2000 = 0
5x(x -2000) - (x - 2000) = 0
(x - 2000)(5x - 1) = 0
Hoặc 5x - 1 = 0 => 5x = 1 => x = 1515
Vậy x = 1515; x = 2000
b) x3 – 13x = 0
x(x2 - 13) = 0
Hoặc x = 0
Hoặc x2 - 13 = 0 => x2 = 13 => x = ±√13
Vậy x = 0; x = ±√13
a) 5x(x-2000)-x+2000=0
5x(x-2000)-(x-2000)=0
(x-2000)(5x-1)=0
\(\Leftrightarrow\) x-2000=0 hoặc 5x-1=0
\(\Leftrightarrow\) x=2000 hoặc x=\(\dfrac{1}{5}\)
b) \(x^3-13x=0\)
\(x\left(x^2-13\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-13=0\)
\(\Leftrightarrow x=0\) hoặc \(x=13\) hoặc \(x=-13\)
\(x^3+2x^2-13x+10=0\)
\(\Rightarrow x^3+2x^2-13x=-10\)
\(\Rightarrow x\times\left(x^2+2x-13\right)=-10\)
\(\Rightarrow x;x^2+2x-13\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(x^2+2x-13\)lẻ
\(\Rightarrow x^2+2x-13\in\left\{\pm5\right\}\)
Lập bảng làm tiếp nhé, em ms lớp 7 nên có gì sai sót mong chị bỏ qua.
~Std well~
#Dư Khả
c, \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=>x-\(\dfrac{1}{2}\)=0
<=> x=\(\dfrac{1}{2}\)
a: =>x(x^2-13)=0
=>\(x\in\left\{0;\sqrt{13};-\sqrt{13}\right\}\)
b: =>25x^2=2
=>x^2=2/25
hay \(x=\pm\dfrac{\sqrt{2}}{5}\)
a) 5x(x - 2000) - (x - 2000) = 0
tương đương (x - 2000)(5x - 1) = 0
tương đương x = 2000 hoặc x = 1/5
b) x(x^2 -13) = 0
\(x\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
tương đương x = 0 hoặ x = \(\sqrt{13}\)hoặc x = \(-\sqrt{13}\)
1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)
a,\(5x\left(x-2000\right)-x+2000=0\)
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
b,\(x^3-13x=0\)
\(\Rightarrow x.x^2-13x=0\)
\(\Rightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)
a) \(x^4+x^2-2=0\)
\(\Leftrightarrow x^4+2x^2-x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2+2\right)-\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+2=0\) hoặc \(x+1=0\) hoặc \(x-1=0\)
. \(x^2+2=0\Leftrightarrow x^2=-2\) (vô nghiệm)
.. \(x+1=0\Leftrightarrow x=-1\)
... \(x-1=0\Leftrightarrow x=1\)
Vậy \(S=\left\{\pm1\right\}\)
b) \(x^4-13x^2+36=0\)
\(\Leftrightarrow x^4-9x^2-4x^2+36=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)-4\left(x^2-9\right)=0
\)
\(\Leftrightarrow\left(x^2-9\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-3=0\) hoặc \(x+2=0\) hoặc \(x-2=0\)
. \(x+3=0\Leftrightarrow x=-3\)
.. \(x-3=0\Leftrightarrow x=3\)
... \(x+2=0\Leftrightarrow x=-2\)
.... \(x-2=0\Leftrightarrow x=2\)
Vậy \(S=\left\{\pm3;\pm2\right\}\)
Câu C bạn ghi ko rõ lém!!!!!!!!
x3 = 13x
⇔ x3 – 13x = 0
⇔ x.x2 – x.13 = 0
(Có nhân tử chung x)
⇔ x(x2 – 13) = 0
⇔ x = 0 hoặc x2 – 13 = 0
+ x2 – 13 = 0 ⇔ x2 = 13 ⇔ x = √13 hoặc x = –√13
Vậy có ba giá trị của x thỏa mãn là x = 0, x = √13 và x = –√13.