\(5x\left(x-2000\right)-x+2000=0\)

b) \(x^3-13x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

a)    5x(x - 2000) - (x - 2000) = 0

tương đương (x - 2000)(5x - 1) = 0

tương đương x = 2000 hoặc x = 1/5

b)   x(x^2 -13) = 0

\(x\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)

tương đương x = 0 hoặ x = \(\sqrt{13}\)hoặc x = \(-\sqrt{13}\)

26 tháng 8 2016

a ) \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-1=0\\x-2000=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=2000\end{array}\right.\)

b ) \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2-13=0\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{13}\\x=-\sqrt{13}\end{array}\right.\end{array}\right.\)

20 tháng 4 2017

Bài giải:

a) 5x(x -2000) - x + 2000 = 0

5x(x -2000) - (x - 2000) = 0

(x - 2000)(5x - 1) = 0

Hoặc 5x - 1 = 0 => 5x = 1 => x = 1515

Vậy x = 1515; x = 2000

b) x3 – 13x = 0

x(x2 - 13) = 0

Hoặc x = 0

Hoặc x2 - 13 = 0 => x2 = 13 => x = ±√13

Vậy x = 0; x = ±√13

29 tháng 5 2017

a) 5x(x-2000)-x+2000=0

5x(x-2000)-(x-2000)=0

(x-2000)(5x-1)=0

\(\Leftrightarrow\) x-2000=0 hoặc 5x-1=0

\(\Leftrightarrow\) x=2000 hoặc x=\(\dfrac{1}{5}\)

b) \(x^3-13x=0\)

\(x\left(x^2-13\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x^2-13=0\)

\(\Leftrightarrow x=0\) hoặc \(x=13\) hoặc \(x=-13\)

20 tháng 8 2018

a,\(5x\left(x-2000\right)-x+2000=0\)

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

b,\(x^3-13x=0\)

\(\Rightarrow x.x^2-13x=0\)

\(\Rightarrow x\left(x^2-13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)

11 tháng 12 2018

a, 3x 3 - 3x = 0

=> 3x ( x 2 - 1 ) = 0

=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}\Rightarrow[}\begin{cases}x=0\\x=1\\x=-1\end{cases}}\)

b, x ( x - 2 ) + ( x - 2 ) = 0

=> ( x - 2 ) ( x + 1 ) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

c, 5x ( x - 2000 ) - x + 2000 = 0

=> ( x - 2000 ) ( 5x - 1 ) = 0

=> \(\orbr{\begin{cases}x-2000=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}}\)

11 tháng 12 2018

a) \(3x^3-3x=0\)

\(\Rightarrow3x\left(x^2-1\right)=0\)

\(\Rightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy \(x\in\left\{0;\pm1\right\}\)

b) \(x\left(x-2\right)+x-2=0\)

\(\Rightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{-1;2\right\}\)

c) \(5x\left(x-2000\right)-x+2000=0\)

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Rightarrow\left(5x-1\right)\left(x-2000\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x-2000=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2000\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{5};2000\right\}\)

6 tháng 4 2020

a) \(2x^3+5x^2-3x=0\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

b) \(2x^3+6x^2=x^2+3x\Leftrightarrow2x^3+5x^2-3x=0\)

Vậy $\orpt{\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}}$ (Giải câu a)

c) \(x^3-12=13x\Leftrightarrow x^3-13x-12=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x-12\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}\right.\)

Vậy $\orpt{\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}}$

d) \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)

17 tháng 7 2018

Lần sau đăng thì chia thành nhiều câu hỏi nhé

\(16^2-9.\left(x+1\right)^2=0\)

\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)

\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)

\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)

\(\left[13-3x\right].\left[19+3x\right]=0\)

\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)

KL:..............................

25 tháng 7 2018

Nhiều câu hỏi mà bn ??

11 tháng 1 2018

a ) \(\left(5x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{5}\\x=7\end{matrix}\right.\)

b ) \(\left(x^2-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-3\end{matrix}\right.\)

c )\(x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

d ) \(x^2+x-12=0\)

\(\Leftrightarrow x^2-4x+3x-12\)

\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

e ) \(15\left(x+9\right)\left(x-3\right)\left(x+21\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=3\\x=-21\end{matrix}\right.\)

g ) \(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-2\end{matrix}\right.\)

i ) \(x^4+2x^3-2x^2+2x-3=0\)

\(\Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\)

\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^3-x^2+x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\\x=-3\end{matrix}\right.\)

h) \(x^2+5x+6=0\)

\(\Leftrightarrow x^2+3x+2x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)