K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

<=>x^2-4x-5x+20=0

<=>x(x-4)-5(x-4)=0

<=>(x-5)(x-4)=0

=>x=5; x=4

4 tháng 12 2017

\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow\left(x^2-4x\right)-\left(5x-20\right)=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

Vậy \(x=4\) hoặc \(x=5\)

20 tháng 6 2019

Đặt t = 3 x > 0 . Bất phương trình đã cho trở thành

a t 2 + 9 a - 1 t + a - 1 > 0 ⇔ a > 9 t t 2 + 9 t + 1

Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi a > m a x t ∈ 0 ; + ∞ f t  với  f t = 9 t t 2 + 9 t + 1

Ta có f ' t = - 9 t 2 t 2 + 9 t + 1 2 < 0 ; ∀ t > 0 ⇒ f t  là hàm nghịch biến trên 0 ; + ∞ .

Suy ra f(t) < f(0) = 1

Do đó 9 t t 2 + 9 t + 1 < 1 ; ∀ t > 0  nên các giá trị của a cần tìm là  a ≥ 1

Đáp án B

15 tháng 3 2018

Đáp án B.

Đặt 3 x = t > 0 .

Phương trình 

⇔ t 2 + 2 ( x − 2 ) t + 2 x − 5 = 0 ⇔ t = − 1   ( 1 ) t = − 2 x + 5 ⇒ 3 x = − 2 x + 5  (*)

Có f ( x ) = 3 x  là hàm số đồng biến trên R

g ( x ) = − 2 x + 5  là hàm số nghịch biến trên R

 Phương trình (*) ⇔ f ( x ) = g ( x )  có nhiều nhất l nghiệm

Có f ( 1 ) = g ( 1 ) ⇒ x = 1  là nghiệm của phương trình

18 tháng 6 2017

Đáp án D

f ( x ) = 2 x − 8 − 2 x + 2 , x > − 2 0, x = − 2 lim x → − 2 + f ( x ) = lim x → − 2 + 2 x − 8 − 2 x + 2 = lim x → − 2 + 2 x − 8 − 4 x + 2 x + 2 2 x − 8 + 2 = lim x → − 2 + 2 x + 2 2 x − 8 + 2 = 0 f ( − 2 ) = 0 = lim x → − 2 + f ( x )

  ∃ lim x → − 2 − f ( x ) nên ∃ lim x → − 2 f ( x )  do đó hàm số không liên tục tại x=-2.

14 tháng 8 2017

a: =>x+3>0

hay x>-3

b: \(\Leftrightarrow-\left(x-2\right)^2\left(x+2\right)>0\)

=>x+2<0

hay x<-2

c: =>x+4>0

hay x>-4

d: =>-3<x<4

25 tháng 4 2019

Bất phương trình đã cho 

Đặt  Bất phương trình trở thành 

Chọn D.

4 tháng 6 2017

\(x^3+9x+26=0\)

\(\Leftrightarrow x^3+2x^2-2x^2-4x+13x+26=0\)

\(\Leftrightarrow x^2\left(x+2\right)-2x\left(x+2\right)+13\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+13\right)=0\) (1)

Ta có: \(x^2-2x+13=\left(x-1\right)^2+12\) >0 với mọi x

Khi đó: \(\left(1\right)\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy pt đã cho có nghiệm x=-2

9 tháng 3 2016

bạn vào đây nhé:olm.vn/hoi-dap/question/53723.html

9 tháng 3 2016

Nguyên Thị Nami có thể vào Hỏi đáp Toánđể hỏi bài !