Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2-4x-15=0
<=> (2x)2-4x+1-16=0
<=> ((2x)2-2.2x.1+12)-16=0
<=> (2x-1)2-42=0
<=> (2x-1-4)(2x-1+4)=0
<=> (2x-5)(2x+3)=0
<=> \(\left[{}\begin{matrix}2x-5=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Ta có: 4x2 - 12x + 9 = 0
=> (2x - 3)2 = 0
=> 2x - 3 = 0
=> x = 3/2
Vậy x = 3/2
\(4x^2-12x=-9\)
\(\Rightarrow\left(2x\right)^2-2.\left(3x\right)+9=0\)
\(\Rightarrow\left(2x\right)^2-2.\left(3x\right)+3^2=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
câu 2 nha = (x2+5x+4)(x2+5x+6) - 24 =(x^2+5x + 5 - 1)(x^2 + 5x + 6 + 1) - 24 = (x^2+5x+5)^2 -25 (lấy -1 - 24 đc -25 hỉu ko)
= (x^2+5x + 5 - 5)(x ^2 + 5x + 5 + 5) = (x^2 +5x)(x^2+5x+10) ( dùng hằng đẳng thức a^2 - b^2 = (a+b)(a-b) )
mk đang bị âm bạn jup mk với
Lời giải:
PT $\Leftrightarrow (2x^2+1)^2-(4x+12)^2+11(2x^2+4x+13)=0$
$\Leftrightarrow (2x^2+1-4x-12)(2x^2+1+4x+12)+11(2x^2+4x+13)=0$
$\Leftrightarrow (2x^2-4x-11)(2x^2+4x+13)+11(2x^2+4x+13)=0$
$\Leftrightarrow (2x^2+4x+13)(2x^2-4x)=0$
\(\Rightarrow \left[\begin{matrix} 2x^2+4x+13=0\\ 2x^2-4x=0\end{matrix}\right.\)
Nếu $2x^2+4x+13=0\Leftrightarrow 2(x+1)^2=-11< 0$ (vô lý)
Nếu $2x^2-4x=0\Leftrightarrow 2x(x-2)=0\Rightarrow x=0$ hoặc $x=2$
\(\left(2x^2+1\right)^2-16\left(x+3\right)^2+11\left(2x^2+4x+13\right)=0\)
...
\(4x^4+10x^2-52x=0\)
\(2x\left(2x^3+5x-26\right)=0\)
\(2x\left(2x^2+4x+13\right)\left(x-2\right)=0\)
\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Tự tính tiếp vs : \(2x^2+4x+13=0\)
x4+4x3-4x2-48x-48=0
=> x4+4(x3-x2) - 48x = 48
=> x4 + 4[x2(x-1)] - 48x = 48
\(x^4+4x^3-4x^2-48x-48=0\)
\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)
\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)
Ta có: \(x^2+6x+12=\left(x+3\right)^2+3>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)
Vậy...
a) \(x\left(x-2\right)-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(x^2+12x-13=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) \(4x^2-4x=8\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) \(x^2-6x=1\)
\(\Leftrightarrow\left(x-3\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
a) x( x - 2 ) - 7x + 14 = 0
<=> x( x - 2 ) - 7( x - 2 ) = 0
<=> ( x - 2 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) x2( x - 3 ) + 12 - 4x = 0
<=> x2( x - 3 ) - 4( x - 3 ) = 0
<=> ( x - 3 )( x2 - 4 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) x2 + 12x - 13 = 0
<=> x2 - x + 13x - 13 = 0
<=> x( x - 1 ) + 13( x - 1 ) = 0
<=> ( x - 1 )( x + 13 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) 4x2 - 4x = 8
<=> 4( x2 - x ) = 8
<=> x2 - x = 2
<=> x2 - x - 2 = 0
<=> x2 + x - 2x - 2 = 0
<=> x( x + 1 ) - 2( x + 1 ) = 0
<=> ( x + 1 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) x2 - 6x = 1
<=> x2 - 6x + 9 = 1 + 9
<=> ( x - 3 )2 = 10
<=> ( x - 3 )2 = ( ±√10 )2
<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
x+4x2+4x3=0
x+2x2+2x2+4x3=0
x(1+2x)+2x2(1+2x)=0
(1+2x)(x+2x2)=0
x(1+2x)(1+2x)=0
\(\Rightarrow\hept{\begin{cases}x=0\\1+2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}}\)
a)8x2+30x+7=0
=>8x2+28x+2x+7=0
=>(8x2+2x)+(28x+7)=0
=>2x(4x+1)+7(4x+1)=0
=>(2x+7)(4x+1)=0
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
b)(x2-4x)2-8(x2-4x)+15=0
=>x4-8x3+8x2+32x+15=0
=>(x-5)(x+1)(x2-4x-3)=0
\(\Rightarrow\hept{\begin{cases}x=5\\x=-1\\x=2-\sqrt{7};x=\sqrt{7}+2\end{cases}}\)
\(x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x-2=0\\ \Rightarrow x=2\)