Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
x2( x + 1 ) + 2x( x + 1 ) = 0 <=> x( x + 1 )( x + 2 ) = 0 <=> x = 0 hoặc x = -1 hoặc x = -2
x( 3x - 1 ) - 5( 1 - 3x ) = 0 <=> x( 3x - 1 ) + 5( 3x - 1 ) = 0 <=> ( 3x - 1 )( x + 5 ) = 0 <=> x = 1/3 hoặc x = -5
Trả lời:
1, \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=-2\)
Vậy x = 0; x = - 1; x = - 2 là nghiệm của pt.
2, \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5\end{cases}}}\)
Vậy x = 1/3; x = - 5 là nghiệm của pt.
(x-1)2-1+x2-(1-x)(x+3)=0
⇒x2-2x+1-1+x2-x(1-x)+3(1-x)=0
⇒x2-2x+1-1+x2-x+x2+3-3x=0
⇒3x2-6x+3=0
⇒3(x2-2x+1)=0
⇒x2-2x+1=0
⇒(x-1)2=0
⇒x-1=0
⇒x=1
Lời giải:
$(x-1)^2-1+x^2-(1-x)(x+3)=0$
$\Leftrightarrow (x^2-2x+1)-1+x^2-(3-x^2-2x)=0$
$\Leftrightarrow x^2-2x+1-1+x^2-3+x^2+2x=0$
$\Leftrightarrow 3x^2-3=0$
$\Leftrightarrow x^2-1=0$
$\Leftrightarrow (x-1)(x+1)=0$
$\Leftrightarrow x=1$ hoặc $x=-1$
\(a,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=0\\ \Rightarrow\left(x^3-27\right)+x\left(4-x^2\right)=0\\ \Rightarrow x^3-27+4x-x^3=0\\ \Rightarrow4x-27=0\\ \Rightarrow4x=27\\ \Rightarrow x=\dfrac{27}{4}\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\\ \Rightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)=-10\\ \Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Rightarrow12x+6=0\\ \Rightarrow12x=-6\\ \Rightarrow x=-\dfrac{1}{2}\)
\(x\left(2x-1\right)+\frac{1}{3}-\frac{2}{3}x=0\)
\(2x^2-x+\frac{1}{3}-\frac{2}{3}x=0\)
\(2x^2-\frac{5}{3}x+\frac{1}{3}=0\)
\(6x^2-5x+1=0\)
\(6x^2-3x-2x+1\)
\(3x\left(2x-1\right)-\left(2x-1\right)=0\)
\(\left(3x-1\right)\left(2x-1\right)=0\)
\(\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{2}\end{cases}}\)
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
(x+1)^3-(x+1)(x-1)=0
(x+1)[(x+1)^2-(x-1)]=0
suy ra x+1=0 ;(x+1)^2-(x-1)=0
x=-1. ; (x+1)^2-x+1=0
x^2+2x+1-x+1=0
x^2+x+2=0 (vô nghiệm)
vậy x=-1