Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
1) \(\Rightarrow x^2+4x+4-x^2+1=9\)
\(\Rightarrow4x=4\Rightarrow x=1\)
2) \(\Rightarrow x\left(2x+7\right)+2\left(2x+7\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=-2\end{matrix}\right.\)
3) \(\Rightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)
\(\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)
a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\)
\(\Rightarrow x^2-2x+1+9-x^2=0\)
\(\Rightarrow2x=10\Rightarrow x=5\)
b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\\ \Leftrightarrow x^2-2x+1+9-x^2=0\\ \Leftrightarrow-2x=-10\\ \Leftrightarrow x=5\)
b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\\ \Leftrightarrow x^2-4x+4-4x^2-4x-1=0\\ \Leftrightarrow-3x^2-8x+3=0\\ \Leftrightarrow3x^2+8x-3=0\\ \Leftrightarrow\left(3x^2+9x\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(a,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=0\\ \Rightarrow\left(x^3-27\right)+x\left(4-x^2\right)=0\\ \Rightarrow x^3-27+4x-x^3=0\\ \Rightarrow4x-27=0\\ \Rightarrow4x=27\\ \Rightarrow x=\dfrac{27}{4}\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\\ \Rightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)=-10\\ \Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Rightarrow12x+6=0\\ \Rightarrow12x=-6\\ \Rightarrow x=-\dfrac{1}{2}\)
\(x\left(2x-1\right)+\frac{1}{3}-\frac{2}{3}x=0\)
\(2x^2-x+\frac{1}{3}-\frac{2}{3}x=0\)
\(2x^2-\frac{5}{3}x+\frac{1}{3}=0\)
\(6x^2-5x+1=0\)
\(6x^2-3x-2x+1\)
\(3x\left(2x-1\right)-\left(2x-1\right)=0\)
\(\left(3x-1\right)\left(2x-1\right)=0\)
\(\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{2}\end{cases}}\)