Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk 1 - x\(\ge\)0
=> x \(\le\)1
Khi đó |x - 2| = -(x - 2)
|x - 3| = -(x - 3)
....
|x - 9| = -(x - 9)
Khi đó |x - 2| + |x - 3| +... + |x - 9| = 1-x (8 cặp số ở VT)
<=> -(x - 2) + -(x - 3) + .... + -(x - 9) = 1 - x
=> -x + 2 - x + 3 - .... - x + 9 = 1 - x
=> -(x + x + ... x) + (2 + 3 + ... + 9) = 1 - x
8 hạng tử x 8 hạng tử
=> -8x + 44 = 1 - x
=> 7x = 43
=> x = 43/7
\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)
\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)
\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)
Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)
=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)
\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)
<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)
<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)
<=> \(2^x=2^{49}\)
<=> x = 49.
\(\left(x-\frac{3}{5}\right)=\frac{2}{5}×-\frac{1}{3}\)
\(\left(x-\frac{3}{5}\right)=-\frac{2}{165}\)
\(x=-\frac{2}{165}+\frac{3}{5}\)
\(x=\frac{97}{165}\)
vậy \(x=\frac{97}{165}\)
\(x×\left(\frac{3}{7}+\frac{2}{3}\right)=\frac{10}{21}\)
\(x×\frac{23}{21}=\frac{10}{21}\)
\(x=\frac{10}{21}:\frac{23}{21}\)
\(x=\frac{10}{23}\)
vậy \(x=\frac{10}{23}\)
\(\left(x-\frac{3}{5}\right):\frac{-1}{3}=\frac{2}{5}\)
=> \(x-\frac{3}{5}=\frac{2}{5}\cdot\left(-\frac{1}{3}\right)=-\frac{2}{15}\)
=> \(x=-\frac{2}{15}+\frac{3}{5}=-\frac{2}{15}+\frac{9}{15}=\frac{7}{15}\)
\(\frac{3}{7}x-\frac{2}{3}x=\frac{10}{21}\)
=> \(\left(\frac{3}{7}-\frac{2}{3}\right)x=\frac{10}{21}\)
=> \(-\frac{5}{21}x=\frac{10}{21}\)
=> \(x=\frac{10}{21}:\frac{-5}{21}=\frac{10}{21}\cdot\frac{-21}{5}=-2\)
Hai bài của ☆luffy cute☆ đều sai hết , xem xét lại đi nhé
Ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)
\(=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\Rightarrow\begin{cases}x-1=2.5=10\\y-2=3.5=15\\z-3=4.5=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)
Vậy x = 11; y = 17; z = 23
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
3^x+4^x=5^x vax=2
Thay x vao bieu thu ta co :
3^2+4^2=5^2
Xong roi do
1+2+3=6 nên x=0
1+2+3=6 x=0