Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `4x(x-5)-(x-1)(x-3)=23`
`<=> 4x^2-20x-x^2+4x-3=23`
`<=>3x^2-16x-26=0`
`<=> x=(8+-\sqrt142)/3
*Nếu đề là: `4x(x-5)-(x-1)(4x-3)=23`
`<=> 4x^2-20x-4x^2+7x-3=23`
`<=>-13x=26`
`<=>x=-2`
b) `(x-5)(x-4)-(x+1)(x-2)=7`
`<=>x^2-9x+20-x^2+x+2=7`
`<=>-8x=-15`
`<=>x=15/8`
a) 5(2x -1) - 4(8 - 3x) = 7
<=> 10x - 5 - 32 + 12x = 7
<=> 22x = 44
<=> x =2
Vậy x = 2 là nghiệm phương trình
b) 7(2x - 5) - 5(7x - 2) + 2(5x - 7) = (x - 2) - (x + 4)
<=> 14x - 35 - 35x + 10 + 10x - 14 = x - 2 - x - 4
<=> -11x - 39 = - 6
<=> -11x = 33
<=> x = -3
Vậy x = -3 là nghiệm phương trình
\(a,10x-5-32+12x=7\)
\(22x=44\)
\(x=2\)
\(b,14x-35-35x+10+10x-14=x-2-x-4\)
\(-11x-39=-6\)
\(-11x=-33\)
\(x=3\)
a)4×(x-5)-(x-1)×(4x-3)=5
=>4x-20-4x2+7x-3-5=0
=>-4x2+11x-28=0
=>-4(x2-\(\frac{11x}{4}\)+7)=0
=>\(-4\left(x-\frac{11}{8}\right)^2-\frac{327}{16}< 0\)
=>vô nghiệm
b) (3x-4)(x-2)=3x(x-9)-3
=>3x2-10x+8=3x2-27x-3
=>17x=-11
=>x=-11/17
c)(x-5)×(x-4)-(x+1)×(x-2)=7
=>x2-9x+20-x2+x+2=7
=>22-8x=7
=>-8x=-15
=>x=8/15
a) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)
\(=\left(20x^2+8x\right)-\left(20x^2+64x-21\right)=133\)
\(=20x^2+8x-20x^2-64x+21=133\)
\(=-56x=112\)
\(\Leftrightarrow x=-2\)
b) \(4\left(x-1\right)\left(x+5\right)+\left(x+2\right)\left(x+5\right)=5\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x+5\right)\left(4x-4+x+2\right)=5\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x+5\right)\left(5x-2\right)=\left(5x-5\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2+23x-10=5x^2+5x-10\)
\(\Leftrightarrow23x=5x\)
\(\Leftrightarrow18x=0\Leftrightarrow x=0\)
a) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)
\(\Leftrightarrow20x^2+8x-\left[10x.\left(2x+7\right)-3.\left(2x+7\right)\right]=133\)
\(\Leftrightarrow20x^2+8x-\left(20x^2+70x-6x-21\right)=133\)
\(\Leftrightarrow20x^2+8x-20x^2-70x+6x+21=133\)
\(\Leftrightarrow8x-70x+6x=133-21\)
\(\Leftrightarrow-56x=112\)
\(\Leftrightarrow x=-\frac{112}{56}=-2\)
Vậy : \(x=-2\)
a) \(\Rightarrow5x^2-15x=5x^2-x-10x+2-5\)
\(\Rightarrow5x^2-15x-5x^2+x+10x=2-5\)
\(\Rightarrow-4x=-3\)
\(\Rightarrow x=\frac{3}{4}\)
Vậy \(x=\frac{3}{4}\)
b) \(\Rightarrow x^2-4x-5x+20-x^2+2x-x+2=7\)
\(\Rightarrow x^2-4x-5x-x^2+2x-x=7-20-2\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
Vậy \(x=\frac{15}{8}\)
c) \(\Rightarrow3x^2-6x-4x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-6x-4x-3x^2+27x=-3-8\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=\frac{-11}{17}\)
Vậy \(x=\frac{-11}{17}\)
Chúc bạn học tốt.
`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`
`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`
(x + 4)2 - (x + 1)(x - 1) = 16
=> x2 + 8x + 16 - x2 + 1 = 16
=> 8x + 17 = 16
=> 8x = -1
=> x = -1/8
b) (2x - 1)2 + (x - 3)2 - 5(x + 7)(x - 7) = 0
=> (4x2 - 4x + 1) + (x2 - 6x + 9) - 5(x2 - 49) = 0
=> 5x2 - 10x + 10 - 5x2 + 245 = 0
=> -10x + 255 = 0
=> 10x = 255
=> x = 25,5
Vậy x = 25,5
- 2(x+5)(x-5)-(x+2)(2x-3)+x(x^2-8)=(x+1)(x^2-x+1)
<=> 2(x^2-25) - 2x^2+3x-4x+6 + x^3-8x = x^3+1
=>2x^2-50 - 2x^2 -9x+6+x^3-x^3-1 = 0
<=>-9x - 45 =0
<=>-9x=45
<=>x=-5
Còn phần b và c bạn cứ khai triển ra,mình phải đi học nên không có thời gian giải cho bạn
\(+>\left(x-5\right)\cdot\left(x-4\right)-\left(x+1\right)\cdot\left(x-2\right)=7\)
\(\Leftrightarrow x^2-4x-5x+20-x^2+2x-x+2=7\)
\(\Leftrightarrow-8x+22=7\)
\(\Leftrightarrow-8x=7-22=-15\)
\(\Rightarrow x=\frac{-15}{-8}=\frac{15}{8}\)
hok tốt .
(x−5)·(x−4)−(x+1)·(x−2)=7
⇔x2−4x−5x+20−x2+2x−x+2=7
⇔−8x+22=7
⇔−8x=7−22=−15
⇒x=−15−8 =158