\(\sqrt{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)

\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)

\(=1\)

2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)

\(=\dfrac{1}{sin^2x-cos^2x}\)

\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)

\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)

=>VT=VP

15 tháng 9 2018

1 ) tanx+1/tanx =2 <=> tan^2x+1=tanx <=> (tanx-1)^2=0 <=> tanx=1 <=> x= pi/4+k.pi

15 tháng 9 2018

có tanx.cotx=1 nên tanx=1/cotx. thay vào

2 tháng 7 2018

a) có tan x . cot x = 1
PT viết lại : tan x + 1/tan x  = 2
             => tan2x + 1 - 2tan x =0
tiếp theo bạn giải phương trình tìm tan 
b) có sin x = \(\sqrt{1-\cos^2x}\)   
Thế vào có : \(\sqrt{1-\cos^2x}=\frac{\sqrt{3}}{4}\)
\(\Rightarrow1-\cos^2x=\frac{3}{16}\left(-1\le\cos x\le1\right)\)
tính cos

để tìm x thì bạn tính bằng máy casio hay vinacal cx được 
SHIFT  + sin     (số bạn mới tính)  //[cos hay tan gì đó ]
=> máy sẽ hiện ra kết quả
=> ấn nút có chữ B đỏ để đổi ra độ

14 tháng 10 2015

\(\sin x+\cos x=\sqrt{2}\Leftrightarrow\sin^2x+\cos^2x+2.\sin x.\cos x=2\Leftrightarrow\sin x.\cos x=\frac{1}{2}\Leftrightarrow\sin x=\frac{1}{2\cos x}\)

Thay vào có \(\frac{1}{2\cos x}+\cos x=\sqrt{2}\)

Giải PT rồi làm tiếp chắc sẽ ra bạn nhé!

2 tháng 8 2018

a+b+c : dựa vào cái hệ thức \(\sin^2\alpha+\cos^2\alpha=1\)

a) Ta có :  \(\left(\sin x+\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x\)

\(=1+2.\sin x.\cos x\left(đpcm\right)\)

b) Ta có :  \(\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x+\sin^2x-2.\sin x.\cos x+\cos^2x\)

\(=\sin^2x+\cos^2x+\sin^2x+\cos^2x\)

\(=2\left(\sin^2x+\cos^2x\right)\)

\(=2\times1=2\left(đpcm\right)\)

c) Ta có :  \(\sin^4x+\cos^4x\)

\(=\left(\sin^2x\right)^2+\left(\cos^2x\right)^2\)

\(=\left(\sin^2x+\cos^2x\right)^2-2.\sin^2x.\cos^2x\)

\(=1-2.\sin^2x.\cos^2x\left(đpcm\right)\)

Vậy ...