Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) có tan x . cot x = 1
PT viết lại : tan x + 1/tan x = 2
=> tan2x + 1 - 2tan x =0
tiếp theo bạn giải phương trình tìm tan
b) có sin x = \(\sqrt{1-\cos^2x}\)
Thế vào có : \(\sqrt{1-\cos^2x}=\frac{\sqrt{3}}{4}\)
\(\Rightarrow1-\cos^2x=\frac{3}{16}\left(-1\le\cos x\le1\right)\)
tính cos
để tìm x thì bạn tính bằng máy casio hay vinacal cx được
SHIFT + sin (số bạn mới tính) //[cos hay tan gì đó ]
=> máy sẽ hiện ra kết quả
=> ấn nút có chữ B đỏ để đổi ra độ
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP
câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)
\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)
\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)
tới đây mk xin sử dụng kiến thức lớp 10 một chút
\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)
vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .
câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)
câu 2 : https://hoc24.vn/hoi-dap/question/657072.html
câu 3 : https://hoc24.vn/hoi-dap/question/657069.html
câu 4 : https://hoc24.vn/hoi-dap/question/656635.html
câu 5 : https://hoc24.vn/hoi-dap/question/657071.html
a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)
- \(cosx=\frac{1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
- \(cosx=\frac{-1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)
b) Bạn làm tương tự câu a) nha.
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)
1 ) tanx+1/tanx =2 <=> tan^2x+1=tanx <=> (tanx-1)^2=0 <=> tanx=1 <=> x= pi/4+k.pi
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
\(\dfrac{x\sqrt{x}}{\sqrt{x}+2}-2\sqrt{x}\left(dk:x\ge0\right)\\ =\dfrac{x\sqrt{x}-2\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\\ =\dfrac{x\sqrt{x}-2x-4\sqrt{x}}{\sqrt{x}+2}\)
\(\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\)
\(tan=3\\ cot=\dfrac{1}{3}\)
Ta có : \(1+tan^2=\dfrac{1}{cos^2}\Rightarrow1+3^2=\dfrac{1}{cos^2}\Rightarrow cos=\dfrac{\sqrt{10}}{10}\)
\(sin=\sqrt{1-cos^2}=\sqrt{1-\left(\dfrac{\sqrt{10}}{10}\right)^2}=\dfrac{3\sqrt{10}}{10}\)
\(B=\dfrac{sin+cos}{sin^3+cos^3}=\dfrac{sin+cos}{\left(sin+cos\right)\left(sin^2+cos^2-sincos\right)}=\dfrac{1}{1-sincos}\)
\(=\dfrac{1}{1-\dfrac{3\sqrt{10}}{10}.\dfrac{\sqrt{10}}{10}}=\dfrac{10}{7}\)
Vậy \(B=\dfrac{10}{7}\)