K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=3x^2\left(x^2+3x+1\right)\)

=3x^4+9x^3+3x^2

phá ngoặc tính BT , nên kết quả sẽ ko ra con số nhận định !!! tui thử thui nha bà  !

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)

\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)

\(3x+y-\frac{47}{12}=\frac{1}{4}\)

\(3x+y=\frac{25}{6}\)

\(3x=\frac{25}{6}-y\)

\(x=\frac{25-25y}{18}\)

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)

\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)

\(3x+y-\frac{47}{12}=\frac{1}{4}\)

\(3x+y=\frac{25}{6}\)

\(y=\frac{25}{6}-3x\)

Vậy \(x=\frac{25-25y}{18}\)

\(y=\frac{25}{6}-3x\)

17 tháng 3 2020

Ta có:

 \(|x+\frac{1}{2}|\ge x+\frac{1}{2}\forall x;|x+\frac{1}{3}|\ge x+\frac{1}{3}\forall x;|y-5|\ge y-5\forall y;|x+\frac{1}{4}|\ge x+\frac{1}{4}\forall x\)

\(\Rightarrow|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)

Mà \(|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|=\frac{1}{4}\)

\(\Rightarrow\frac{1}{4}\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)

\(\Rightarrow\frac{1}{4}\ge3x+y-\frac{47}{12}\)

\(\Rightarrow3x+y\le\frac{25}{6}\)

\(\Rightarrow x\le\frac{\frac{25}{6}-y}{3}\)

Thay vào tính y

5 tháng 4 2023

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x^3-8x\left(x+2\right)=6\\ \Leftrightarrow\left(x^2+3x+2\right).\left(x+3\right)-x^3-8x^2-16x=6\\ \Leftrightarrow x^3+6x^2+11x+6-x^3-8x^2-16x-6=0\\ \Leftrightarrow-2x^2-5x=0\\ \Leftrightarrow x.\left(-2x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\-2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

18 tháng 7 2016

a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)

=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)

=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)

=>\(\frac{2}{3}-\frac{4}{3}x=5\)

=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)

=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)

b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)