\(\left(x-\frac{1}{2}\right).\left(x+\frac{1}{2}\right)\ge0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

=> \(x-\frac{1}{2}\ge0\Rightarrow x\ge\frac{1}{2}\left(1\right)\)

hoặc \(x+\frac{1}{2}\ge0\Rightarrow x\ge-\frac{1}{2}\left(2\right)\)

Từ (1) và (2) => \(x\ge\frac{1}{2}\)

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

23 tháng 2 2018

a, => 3.(x-1).27.(x-1) = 8.2

=> 81.(x-1)^2 = 16

=> (x-1)^2 = 16/81

=> x-1=-4/9 hoặc x-1=4/9

=> x=5/9 hoặc x=13/9

b, => \(\sqrt{x}.\left(\sqrt{x}-3\right)\) = 0

=> \(\sqrt{x}=0\)hoặc \(\sqrt{x}-3=0\)

=> x=0 hoặc x=9

Tk mk nha

26 tháng 8 2019

a) \(\frac{7-8x}{6}=\frac{-4+2x}{5}\)

=> \(\left(7-8x\right).5=6\left(-4+2x\right)\)

=> 35 - 40x = -24 + 12x

=> 35 + 24 = 12x + 40x

=> 52x = 59

=> x = 59/52

b) \(\frac{1-3:x}{8}=\frac{8}{1-3:x}\)

=> (1 - 3: x)2 = 82

=> \(\orbr{\begin{cases}1-3:x=8\\1-3:x=-8\end{cases}}\)

=> \(\orbr{\begin{cases}3:x=-7\\3:x=9\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{3}{7}\\x=\frac{1}{3}\end{cases}}\)

26 tháng 8 2019

c) \(\left(x+1\right)\left(x-2\right)\ge0\)

=> \(\hept{\begin{cases}x+1\ge0\\x-2\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1\le0\\x-2\le0\end{cases}}\)

=> \(\hept{\begin{cases}x\ge-1\\x\ge2\end{cases}}\) hoặc \(\hept{\begin{cases}x\le-1\\x\le2\end{cases}}\)

=> \(-1\le x\le2\)

h) \(\left(x+1\right)\left(x-3\right)\le0\)

=> \(\hept{\begin{cases}x+1\ge0\\x-3\le0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1\le0\\x-3\ge0\end{cases}}\)

=> \(\hept{\begin{cases}x\ge-1\\x\le3\end{cases}}\) hoặc \(\hept{\begin{cases}x\le-1\\x\ge3\end{cases}}\) (loại)

\(-1\le x\le3\)

20 tháng 9 2018

a, \(\left(x-3\right)\left(x+2\right)>0\)

th1 : \(\hept{\begin{cases}x-3>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Rightarrow}x>3}\)

th2 : \(\hept{\begin{cases}x-3< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -3\end{cases}\Rightarrow}x< -3}\)

vậy x > 3 hoặc x < -3

b, \(\left(x+5\right)\left(x+1\right)< 0\)

th1 : \(\hept{\begin{cases}x+5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-5\\x< -1\end{cases}\Rightarrow x\in\left\{-4;-3;-2\right\}}}\)

th2 : \(\hept{\begin{cases}x+5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -5\\x>-1\end{cases}\Rightarrow}x\in\varnothing}\)

vậy x = -4; -3; -2

c, \(\frac{x-4}{x+6}\le0\)

xét \(\frac{x-4}{x+6}=0\)

\(\Rightarrow x-4=0;x\ne-6\)

\(\Rightarrow x=4\ne-6\)

xét \(\frac{x-4}{x+5}< 0\)

th1 : \(\hept{\begin{cases}x-4< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 4\\x>-5\end{cases}\Rightarrow}x\in\left\{3;2;1;0;-1;-2;-3;-4\right\}}\)

th2 : \(\hept{\begin{cases}x-4>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>4\\x< -5\end{cases}\Rightarrow x\in\varnothing}}\)

d tương tự c

20 tháng 9 2018

\(\frac{\left(x-6\right)}{x-7}\ge0\)

Th1: x - 6 < 0

<=> x - 6 + 6 < 0 + 6

<=> x - 6 + 6 > 0 + 6

=> x < 6

Th2: x - 7

<=> x - 7 + 7 < 0 + 7

<=> x - 7 + 7 > 0 + 7

=> x > 7

=> x < 6 hoặc x > 7

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)