Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thang king of king kia, chua hoc hang dang thuc a
thang Vinh ngu vay khong biet
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93
1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93
1/2(1/3-1/2x+3)=15/93
=>1/3-1/2x+3=10/31
=>1/2x+3=1/93
=>2x+3=93
2x=93-3=90
=>x=45
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=45\)
Vậy \(x=45\).
a,15-3./2x-1/=6
3./2x-1/=15-6
3./2x-1/=9
2x-1=9:3=3
TH1:2x-1=3
2x=3+1=4
\(\Rightarrow x=2\)
-5.(x+1/5) -1/2.(x-2/3)=3/2x-5/6
-5x + (-1) -1/2x -1/3=3/2x-5/6
-5x-1/2x-3/2x=1+1/3-5/6
x.(-5-1/2-3/2)= 6/6+2/6+(-5/6)
x.(-10/2+(-1/2)+(-3/2))=3/6
x.6/2=1/2
x=1/2:6/2
x=1/6
Vậy x = 1/6
3.(x-1/2) -5(x+3/5)=-x+1/5
3x - 3/2 -5x +3 = -x+1/5
3x-5x+x= 3/2-3+1/5
x.(3-5+1)=15/10 + (-30/10)+2/10
x.(-1)= -13/10
x = -13/10 : (-1)
x=13/10
vậy x=13/10
ta có : \(\left(2x-1\right)^2-2=30\Leftrightarrow\left(2x-1\right)^2=32\Leftrightarrow\left[{}\begin{matrix}2x-1=\sqrt{32}\\2x-1=-\sqrt{32}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1+\sqrt{32}\\2x=1-\sqrt{32}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{32}}{2}\\x=\dfrac{1-\sqrt{32}}{2}\end{matrix}\right.\) vậy .............................
\(\left(2x-1\right)^2-2=30\)
\(\Leftrightarrow\left(2x-1\right)^2=30+2\)
\(\Leftrightarrow\left(2x-1\right)^2=32\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=\sqrt{32}\\2x-1=-\sqrt{32}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\sqrt{32}+1\\2x=-\sqrt{32+1}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{32}+1}{2}\\x=\dfrac{-\sqrt{32}+1}{2}\end{matrix}\right.\)
Vậy ......