Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0.^{\left(1\right)}\)
\(NX\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}\Rightarrow}\left(1\right)\ge0\)
Dấu \("="\)xảy ra khi và chỉ khi
\(\hept{\begin{cases}\left|2x^2+4x\right|=0\\\left|x^2+5x+6\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(2x+4\right)=0\\x\left(x+5\right)=0-6\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x\inƯ\left(6\right)\end{cases}\Rightarrow x=-2}\)
Vậy x = -2
\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0\)
Ta có : \(\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}}\Rightarrow\left|2x^2+4x\right|+\left|x^2+5x+6\right|\ge0\)
\(\Rightarrow\orbr{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(2x+4\right)=0\left(1\right)\\x\left(x+5\right)=-6\left(2\right)\end{cases}}\)
(1) \(x\left(2x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(2) x(x+5)=-6
=> x2+5x=-6
=> x2+5x+6=0
=> x2 +3x+2x+6=0
=> x(x+3)+2(x+3) = 0
=> (x+3)(x+2)=0
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Vậy ........
b) Theo bài ra , ta có :
(2x - 5) - (3x - 7) = x + 3
(=) 2x - 5 - 3x + 7 = x + 3
(=) -2x = 1
(=) x = -1/2
Vậy x = -1/2
Chúc bạn học tốt =))
a) | 9 + 7x | = 3 - 5x
\(\Rightarrow\orbr{\begin{cases}9+7x=3-5x\\9+7x=-\left(3-5x\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}7x+5x=3-9\\9+7x=-3+5x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}12x=-6\\7x-5x=-3-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\2x=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=-6\end{cases}}\)
a, \(P+\left(5x^2+9xy\right)=6x^2+9xy-x\)
\(\Rightarrow P=x^2-x\)
Gỉa sử : x = 1 là nghiệm của đa thức
Thay x = 1 vào P ta được : \(1-1=0\)*đúng*
Vậy x = 1 là nghiệm của đa thức trên
b, Với \(x\ge\frac{1}{7}\)đa thức có dạng : \(A=2x^2+7x-1-5+x-2x^2=8x-6\)(1)
Với \(x< \frac{1}{7}\)đa thức có dạng : \(A=2x^2-7x+1-5+x-2x^2=-6x-4\)(2)
TH1 : Với đa thức (1) ta có : \(8x-6=2\Leftrightarrow x=1\)
TH2 : Với đa thức (2) ta có : \(-6x-4=2\Leftrightarrow x=-1\)
Bài làm:
a) | 5x - 4 | = | x + 2 |
=> 5x - 4 = x + 2
=> 5x - x = 2 + 4
=> x . (5 - 1) = 6
=> x . 4 = 6
=> x = 6 : 4 = 1,5
b) | x + 2/5 | = 2x
=> x + 2/5 = 2x hoặc x + 2/5 = -2x
* x + 2/5 = 2x
=> x - 2x = -2/5
=> x . (1 - 2) = -2/5
=> x .(-1) = -2/5
=> x = -2/5 : (-1)
=> x = 2/5
* x + 2/5 = -2x
=> x + 2x = 2/5
=> x . (1 + 2) = 2/5
=> x . 3 = 2/5
=> x = 2/5 : 3
=> x = 2/15
mk chỉ làm 2 bài này thôi, còn 2 bài kia mk ko có pít làm. Sorry!
Xét x-7=2.(x+5)
x-7=2x+10
-10-7=2x-x
-17=x
Xét -(x-7)=2.(x+5)
-x+7=2x+10
7-10=2x+x
-3=3x
-1=x
Vậy x=-1 hoặc x=-17
Bài 3:
\(\left|1-2x\right|+x+2=0\)
⇒ \(\left|1-2x\right|+x=0-2\)
⇒ \(\left|1-2x\right|+x=-2\)
⇒ \(\left|1-2x\right|=-2-x\)
⇒ \(\left[{}\begin{matrix}1-2x=-2-x\\1-2x=2+x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}1+2=-x+2x\\1-2=x+2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}3=1x\\-1=3x\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=3:1\\x=\left(-1\right):3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{3;-\frac{1}{3}\right\}.\)
Bài 4:
\(\left|5x-3\right|=\left|7-x\right|\)
⇒ \(\left[{}\begin{matrix}5x-3=7-x\\5x-3=x-7\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x+x=7+3\\5x-x=\left(-7\right)+3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}6x=10\\4x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=10:6\\x=\left(-4\right):4\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{5}{3}\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{3};-1\right\}.\)
Chúc bạn học tốt!
UKIHJ